咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是1331-1340 订阅
排序:
Real-Time Pose Estimation of Articulated Objects using Low-Level Motion
Real-Time Pose Estimation of Articulated Objects using Low-L...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.5
作者: Ben Daubney David Gibson Neill Campbell Department of Computer Science University of Bristol UK
We present a method that is capable of tracking and estimating pose of articulated objects in real-time. this is achieved by using a bottom-up approach to detect instances of the object in each frame, these detections... 详细信息
来源: 评论
Who Killed the Directed Model?
Who Killed the Directed Model?
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.12
作者: Justin Domke Alap Karapurkar Yiannis Aloimonos Department of Computer Science University of Maryland USA
Prior distributions are useful for robust low-level vision, and undirected models (e.g. Markov Random Fields) have become a central tool for this purpose. though sometimes these priors can be specified by hand, this b... 详细信息
来源: 评论
A Fast Local Descriptor for Dense Matching
A Fast Local Descriptor for Dense Matching
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.8
作者: Engin Tola Vincent Lepetit Pascal Fua École Polytechnique Fédérale de Lausanne (EPFL) Computer Vision Laboratory Lausanne Switzerland École PolytechniqueFédérale de Lausanne (EPFL) Computer Vision Laboratory Lausanne Switzerland
We introduce a novel local image descriptor designed for dense wide-baseline matching purposes. We feed our descriptors to a graph-cuts based dense depth map estimation algorithm and this yields better wide-baseline p... 详细信息
来源: 评论
Filtering Internet Image Search Results Towards Keyword Based Category recognition
Filtering Internet Image Search Results Towards Keyword Base...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.7
作者: Kamil Wnuk Stefano Soatto Computer Science Department University of California Los Angeles CA USA
In this work we aim to capitalize on the availability of Internet image search engines to automatically create image training sets from user provided queries. this problem is particularly difficult due to the low prec... 详细信息
来源: 评论
Robust Dual Motion Deblurring
Robust Dual Motion Deblurring
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.12
作者: Jia Chen Lu Yuan Chi-Keung Tang Long Quan Vision and Graphics Group Hong Kong University of Science and Technology Hong Kong China
this paper presents a robust algorithm to deblur two consecutively captured blurred photos from camera shaking. Previous dual motion deblurring algorithms succeeded in small and simple motion blur and are very sensiti... 详细信息
来源: 评论
Similarity-based cross-layered hierarchical representation for object categorization
Similarity-based cross-layered hierarchical representation f...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.2
作者: Sanja Fidler Marko Boben Ales Leonardis Faculty of Computer and Information Science University of Ljubljana Slovenia
this paper proposes a new concept in hierarchical representations that exploits features of different granularity and specificity coming from all layers of the hierarchy. the concept is realized within a cross-layered... 详细信息
来源: 评论
Recovering Consistent Video Depth Maps via Bundle Optimization
Recovering Consistent Video Depth Maps via Bundle Optimizati...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.4
作者: Guofeng Zhang Jiaya Jia Tien-Tsin Wong Hujun Bao State Key Lab of CAD&CG University of Zhejiang China Chinese University of Hong Kong Hong Kong China
this paper presents a novel method for reconstructing high-quality video depth maps. A bundle optimization model is proposed to address the key issues, including image noise and occlusions, in stereo reconstruction. O... 详细信息
来源: 评论
Modeling complex luminance variations for target tracking
Modeling complex luminance variations for target tracking
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.6
作者: Christophe Collewet Eric Marchand Rennes France
Lambert's model is widely used in low level computer vision algorithms such as matching, tracking or optical flow computation for example. However, it is well known that these algorithms often fail when they face ... 详细信息
来源: 评论
Stereoscopic Inpainting: Joint Color and Depth Completion from Stereo Images
Stereoscopic Inpainting: Joint Color and Depth Completion fr...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.9
作者: Liang Wang Hailin Jin Ruigang Yang Minglun Gong Center for Visualization and Virtual Environments University of Kentucky USA Advanced Technology Laboratories Adobe Systems Inc. USA Computer Science Department Memorial University of Newfoundland Canada
We present a novel algorithm for simultaneous color and depth inpainting. the algorithm takes stereo images and estimated disparity maps as input and fills in missing color and depth information introduced by occlusio... 详细信息
来源: 评论
Bayesian Color Constancy Revisited
Bayesian Color Constancy Revisited
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.11
作者: Peter Vincent Gehler Carsten Rother Andrew Blake Tom Minka Toby Sharp Max-Planck Institute Tubingen Germany Microsoft Research Cambridge Cambridge UK
Computational color constancy is the task of estimating the true reflectances of visible surfaces in an image. In this paper we follow a line of research that assumes uniform illumination of a scene, and that the prin... 详细信息
来源: 评论