咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是1451-1460 订阅
排序:
Face Tracking and recognition with Visual Constraints in Real-World Videos
Face Tracking and Recognition with Visual Constraints in Rea...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.6
作者: Minyoung Kim Sanjiv Kumar Vladimir Pavlovic Henry Rowley Department of Computer Science Rutgers University Piscataway NJ USA Google Research New York NY USA Google Research Mountain View CA USA
We address the problem of tracking and recognizing faces in real-world, noisy videos. We track faces using a tracker that adaptively builds a target model reflecting changes in appearance, typical of a video setting. ... 详细信息
来源: 评论
Locally Assembled Binary (LAB) Feature with Feature-centric Cascade for Fast and Accurate Face Detection
Locally Assembled Binary (LAB) Feature with Feature-centric ...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.11
作者: Shengye Yan Shiguang Shan Xilin Chen Wen Gao Key Lab of Intelligent Information Processing Chinese Academy and Sciences Beijing China Key Lab of Intelligent Information Processing Chinese Academy of Sciences (CAS) Beijing China School of EE& Peking University Beijing China Digital Media Research Center Institute of Computing Technology Chinese Academy and Sciences Beijing China
In this paper, we describe a novel type of feature for fast and accurate face detection. the feature is called Locally Assembled Binary (LAB) Haar feature. LAB feature is basically inspired by the success of Haar feat... 详细信息
来源: 评论
Auto-context and Its Application to High-level vision Tasks
Auto-context and Its Application to High-level Vision Tasks
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.3
作者: Zhuowen Tu Lab of Neuro Imaging University of California Los Angeles USA
the notion of using context information for solving high-level vision problems has been increasingly realized in the field. However, how to learn an effective and efficient context model, together with the image appea... 详细信息
来源: 评论
Margin-Based Discriminant Dimensionality Reduction for Visual recognition
Margin-Based Discriminant Dimensionality Reduction for Visua...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.6
作者: Hakan Cevikalp Frederic Jurie Bill Triggs Robi Polikar Eskisehir Osmangazi University Eskisehir Turkey Laboratoire Jean Kuntzmann Grenoble France University of Caen France Rowan University Glassboro NJ USA
Nearest neighbour classifiers and related kernel methods often perform poorly in high dimensional problems because it is infeasible to include enough training samples to cover the class regions densely. In such cases,... 详细信息
来源: 评论
Conditional Density Learning via Regression with Application to Deformable Shape Segmentation
Conditional Density Learning via Regression with Application...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.4
作者: Jingdan Zhang Shaohua Kevin Zhou Dorin Comaniciu Leonard McMillan Integrated Data Systems Department Siemens AG Corporate Research and Development Princeton NJ USA Department of Computer Science University of North Carolina Chapel Hill Chapel Hill NC USA
Many vision problems can be cast as optimizing the conditional probability density function p(C|I) where I is an image and C is a vector of model parameters describing the image. Ideally, the density function p(C|I) w... 详细信息
来源: 评论
Human Action recognition using Local Spatio-Temporal Discriminant Embedding
Human Action Recognition using Local Spatio-Temporal Discrim...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.10
作者: Kui Jia Dit-Yan Yeung Shenzhen Institute of Advanced Integration Technology CAS/CUHK Shenzhen China Hong Kong University of Science and Technology Hong Kong China
Human action video sequences can be considered as nonlinear dynamic shape manifolds in the space of image frames. In this paper, we address learning and classifying human actions on embedded low-dimensional manifolds.... 详细信息
来源: 评论
Learning Object Motion patterns for Anomaly Detection and Improved Object Detection
Learning Object Motion Patterns for Anomaly Detection and Im...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.4
作者: Arslan Basharat Alexei Gritai Mubarak Shah Computer Vision Lab School of Electrical Engineering and Computer Science University of Central Florida Orlando FL USA
We present a novel framework for learning patterns of motion and sizes of objects in static camera surveillance. the proposed method provides a new higher-level layer to the traditional surveillance pipeline for anoma... 详细信息
来源: 评论
Max Margin AND/OR Graph Learning for Parsing the Human Body
Max Margin AND/OR Graph Learning for Parsing the Human Body
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.11
作者: Long (Leo) Zhu Yuanhao Chen Yifei Lu Chenxi Lin Alan Yuille Department of Statistics University of California Los Angeles USA University of Science and Technology China Shanghai Jiaotong University China Microsoft Research Asia China Department of Statistics Psychology and Computer Science University of California Los Angeles USA
We present a novel structure learning method, Max Margin AND/OR Graph (MM-AOG), for parsing the human body into parts and recovering their poses. Our method represents the human body and its parts by an AND/OR graph, ... 详细信息
来源: 评论
Principled Fusion of High-level Model and Low-level Cues for Motion Segmentation
Principled Fusion of High-level Model and Low-level Cues for...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.3
作者: Arasanathan thayananthan Masahiro Iwasaki Roberto Cipolla Department of Engineering University of Cambridge Cambridge UK Panasonic Europe Limited Cambridge UK
High-level generative models provide elegant descriptions of videos and are commonly used as the inference framework in many unsupervised motion segmentation schemes. However, approximate inference in these models oft... 详细信息
来源: 评论
Spatio-temporal Saliency Detection Using Phase Spectrum of Quaternion Fourier Transform
Spatio-temporal Saliency Detection Using Phase Spectrum of Q...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.9
作者: Chenlei Guo Qi Ma Liming Zhang Department of Electronic Engineering Fudan University Shanghai China
Salient areas in natural scenes are generally regarded as the candidates of attention focus in human eyes, which is the key stage in object detection. In computer vision, many models have been proposed to simulate the... 详细信息
来源: 评论