咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是331-340 订阅
排序:
Fast Video Classification via Adaptive Cascading of Deep Models  30
Fast Video Classification via Adaptive Cascading of Deep Mod...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shen, Haichen Han, Seungyeop Philipose, Matthai Krishnamurthy, Arvind Univ Washington Seattle WA 98195 USA Rubrik Inc Palo Alto CA USA Microsoft Res Redmond WA USA
Recent advances have enabled "oracle" classifiers that can classify across many classes and input distributions with high accuracy without retraining. However, these classifiers are relatively heavyweight, s... 详细信息
来源: 评论
Superpixel-based Tracking-by-Segmentation using Markov Chains  30
Superpixel-based Tracking-by-Segmentation using Markov Chain...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yeo, Donghun Son, Jeany Han, Bohyung Han, Joon Hee POSTECH Dept Comp Sci & Engn Pohang South Korea
We propose a simple but effective tracking-by-segmentation algorithm using Absorbing Markov Chain (AMC) on superpixel segmentation, where target state is estimated by a combination of bottom-up and top-down approaches... 详细信息
来源: 评论
Semi-Supervised Deep Learning for Monocular Depth Map Prediction  30
Semi-Supervised Deep Learning for Monocular Depth Map Predic...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kuznietsov, Yevhen Stuckle, Jorg Leibe, Bastian Rhein Westfal TH Aachen Visual Comp Inst Comp Vis Grp Aachen Germany
Supervised deep learning often suffers from the lack of sufficient training data. Specifically in the context of monocular depth map prediction, it is barely possible to determine dense ground truth depth images in re... 详细信息
来源: 评论
Deep Semantic Feature Matching  30
Deep Semantic Feature Matching
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ufer, Nikolai Ommer, Bjoern Heidelberg Univ Heidelberg Collaboratory Image Proc IWR Heidelberg Germany
Estimating dense visual correspondences between objects with intra-class variation, deformations and background clutter remains a challenging problem. thanks to the breakthrough of CNNs there are new powerful features... 详细信息
来源: 评论
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields  30
Realtime Multi-Person 2D Pose Estimation using Part Affinity...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cao, Zhe Simon, Tomas Wei, Shih-En Sheikh, Yaser Carnegie Mellon Univ Inst Robot Pittsburgh PA 15213 USA
We present an approach to efficiently detect the 2D pose of multiple people in an image. the approach uses a non-parametric representation, which we refer to as Part Affinity Fields (PAFs), to learn to associate body ... 详细信息
来源: 评论
A clever elimination strategy for efficient minimal solvers  30
A clever elimination strategy for efficient minimal solvers
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kukelova, Zuzana Kileel, Joe Sturmfels, Bernd Pajdla, Tomas Czech Tech Univ Fac Elect Engn Prague Czech Republic Univ Calif Berkeley Berkeley CA 94720 USA
We present a new insight into the systematic generation of minimal solvers in computer vision, which leads to smaller and faster solvers. Many minimal problem formulations are coupled sets of linear and polynomial equ... 详细信息
来源: 评论
Spatially Adaptive Computation Time for Residual Networks  30
Spatially Adaptive Computation Time for Residual Networks
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Figurnov, Michael Collins, Maxwell D. Zhu, Yukun Zhang, Li Huang, Jonathan Vetrov, Dmitry Salakhutdinov, Ruslan Natl Res Univ Higher Sch Econ Moscow Russia Google Inc Mountain View CA USA Yandex Moscow Russia Carnegie Mellon Univ Pittsburgh PA 15213 USA
this paper proposes a deep learning architecture based on Residual Network that dynamically adjusts the number of executed layers for the regions of the image. this architecture is end-to-end trainable, deterministic ... 详细信息
来源: 评论
GuessWhat?! Visual object discovery through multi-modal dialogue  30
GuessWhat?! Visual object discovery through multi-modal dial...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: de Vries, Harm Strub, Florian Chandar, Sarath Pietquin, Olivier Larochelle, Hugo Courville, Aaron Univ Montreal Montreal PQ Canada Univ Lille CNRS Cent Lille InriaUMR 9189CRIStAL Villeneuve Dascq France DeepMind London England Twitter San Francisco CA USA
We introduce GuessWhat?!, a two-player guessing game as a testbed for research on the interplay of computer vision and dialogue systems. the goal of the game is to locate an unknown object in a rich image scene by ask... 详细信息
来源: 评论
Zero-Shot Classification with Discriminative Semantic Representation Learning  30
Zero-Shot Classification with Discriminative Semantic Repres...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ye, Meng Guo, Yuhong Temple Univ Comp & Informat Sci Philadelphia PA 19122 USA Carleton Univ Sch Comp Sci Ottawa ON Canada
Zero-shot learning, a special case of unsupervised domain adaptation where the source and target domains have disjoint label spaces, has become increasingly popular in the computer vision community. In this paper, we ... 详细信息
来源: 评论
Cognitive Mapping and Planning for Visual Navigation  30
Cognitive Mapping and Planning for Visual Navigation
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gupta, Saurabh Davidson, James Levine, Sergey Sukthankar, Rahul Malik, Jitendra Univ Calif Berkeley Berkeley CA USA Google Mountain View CA USA
We introduce a neural architecture for navigation in novel environments. Our proposed architecture learns to map from first-person views and plans a sequence of actions towards goals in the environment. the Cognitive ... 详细信息
来源: 评论