咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是411-420 订阅
排序:
Attend to You: Personalized Image Captioning with Context Sequence Memory Networks  30
<i>Attend to You</i>: Personalized Image Captioning with Con...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Park, Cesc Chunseong Kim, Byeongchang Kim, Gunhee Lunit Inc Seoul South Korea Seoul Natl Univ Seoul South Korea
We address personalization issues of image captioning, which have not been discussed yet in previous research. For a query image, we aim to generate a descriptive sentence, accounting for prior knowledge such as the u... 详细信息
来源: 评论
Modeling Relationships in Referential Expressions with Compositional Modular Networks  30
Modeling Relationships in Referential Expressions with Compo...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hu, Ronghang Rohrbach, Marcus Andreas, Jacob Darrell, Trevor Saenko, Kate Univ Calif Berkeley Berkeley CA 94720 USA Boston Univ Boston MA 02215 USA
People often refer to entities in an image in terms of their relationships with other entities. For example, the black cat sitting under the table refers to both a black cat entity and its relationship with another ta... 详细信息
来源: 评论
ER3: A Unified Framework for Event Retrieval, recognition and Recounting  30
ER3: A Unified Framework for Event Retrieval, Recognition an...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gao, Zhanning Hua, Gang Zhang, Dongqing Jojic, Nebojsa Wang, Le Xue, Jianru Zheng, Nanning Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian Shaanxi Peoples R China Microsoft Res Redmond WA USA
We develop a unified framework for complex event retrieval, recognition and recounting. the framework is based on a compact video representation that exploits the temporal correlations in image features. Our feature a... 详细信息
来源: 评论
All You Need is Beyond a Good Init: Exploring Better Solution for Training Extremely Deep Convolutional Neural Networks with Orthonormality and Modulation  30
All You Need is Beyond a Good Init: Exploring Better Solutio...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xie, Di Xiong, Jiang Pu, Shiliang Hikvis Res Inst Hangzhou Zhejiang Peoples R China
Deep neural network is difficult to train and this predicament becomes worse as the depth increases. the essence of this problem exists in the magnitude of backpropagated errors that will result in gradient vanishing ... 详细信息
来源: 评论
Unsupervised part learning for visual recognition  30
Unsupervised part learning for visual recognition
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sicre, Ronan Avrithis, Yannis Kijak, Ewa Jurie, Frederic INRIA IRISA Rennes France Normandie Univ UNICAEN ENSICAEN CNRS UMR GREYC Caen France
Part-based image classification aims at representing categories by small sets of learned discriminative parts, upon which an image representation is built. Considered as a promising avenue a decade ago, this direction... 详细信息
来源: 评论
Multiple Instance Detection Network with Online Instance Classifier Refinement  30
Multiple Instance Detection Network with Online Instance Cla...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tang, Peng Wang, Xinggang Bai, Xiang Liu, Wenyu Huazhong Univ Sci & Technol Sch EIC Wuhan Hubei Peoples R China
Of late, weakly supervised object detection is with great importance in object recognition. Based on deep learning, weakly supervised detectors have achieved many promising results. However, compared with fully superv... 详细信息
来源: 评论
End-to-end Learning of Driving Models from Large-scale Video Datasets  30
End-to-end Learning of Driving Models from Large-scale Video...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xu, Huazhe Gao, Yang Yu, Fisher Darrell, Trevor Univ Calif Berkeley Berkeley CA 94720 USA
Robust perception-action models should be learned from training data with diverse visual appearances and realistic behaviors, yet current approaches to deep visuomotor policy learning have been generally limited to in... 详细信息
来源: 评论
A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning  30
A Gift from Knowledge Distillation: Fast Optimization, Netwo...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yim, Junho Joo, Donggyu Bae, Jihoon Kim, Junmo Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon South Korea Elect & Telecommun Res Inst Daejeon South Korea
We introduce a novel technique for knowledge transfer, where knowledge from a pretrained deep neural network (DNN) is distilled and transferred to another DNN. As the DNN maps from the input space to the output space ... 详细信息
来源: 评论
the VQA-Machine: Learning How to Use Existing vision Algorithms to Answer New Questions  30
The VQA-Machine: Learning How to Use Existing Vision Algorit...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Peng Wu, Qi Shen, Chunhua van den Hengel, Anton Northwestern Polytech Univ Xian Shaanxi Peoples R China Univ Adelaide Adelaide SA Australia Australian Ctr Robot Vis Brisbane Qld Australia
One of the most intriguing features of the Visual Question Answering (VQA) challenge is the unpredictability of the questions. Extracting the information required to answer them demands a variety of image operations f... 详细信息
来源: 评论
Incremental Kernel Null Space Discriminant Analysis for Novelty Detection  30
Incremental Kernel Null Space Discriminant Analysis for Nove...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Juncheng Lian, Zhouhui Wang, Yi Xiao, Jianguo Peking Univ Inst Comp Sci & Technol Beijing Peoples R China Dalian Univ Technol Sch Software Dalian Peoples R China Key Lab Ubiquitous Network & Serv Software Liaoni Dalian Peoples R China
Novelty detection, which aims to determine whether a given data belongs to any category of training data or not, is considered to be an important and challenging problem in areas of pattern recognition, Machine Learni... 详细信息
来源: 评论