咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是421-430 订阅
排序:
Conditional Similarity Networks  30
Conditional Similarity Networks
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Veit, Andreas Belongie, Serge Karaletsos, theofanis Cornell Univ Dept Comp Sci Ithaca NY 14853 USA Cornell Univ Cornell Tech Ithaca NY 14853 USA Uber AI Labs Ithaca NY USA Sloan Kettering Inst Computat Biol New York NY USA
What makes images similar? To measure the similarity between images, they are typically embedded in a feature-vector space, in which their distance preserve the relative dissimilarity. However, when learning such simi... 详细信息
来源: 评论
A New Representation of Skeleton Sequences for 3D Action recognition  30
A New Representation of Skeleton Sequences for 3D Action Rec...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ke, Qiuhong Bennamoun, Mohammed An, Senjian Sohel, Ferdous Boussaid, Farid Univ Western Australia Nedlands WA Australia Murdoch Univ Murdoch WA Australia
this paper presents a new method for 3D action recognition with skeleton sequences (i.e., 3D trajectories of human skeleton joints). the proposed method first transforms each skeleton sequence into three clips each co... 详细信息
来源: 评论
Hard Mixtures of Experts for Large ScaleWeakly Supervised vision  30
Hard Mixtures of Experts for Large ScaleWeakly Supervised Vi...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gross, Sam Ranzato, Marc'Aurelio Szlam, Arthur Facebook AI Res Menlo Pk CA USA
Training convolutional networks (CNN's) that fit on a single GPU with minibatch stochastic gradient descent has become effective in practice. However, there is still no effective method for training large CNN'... 详细信息
来源: 评论
Unambiguous Text Localization and Retrieval for Cluttered Scenes  30
Unambiguous Text Localization and Retrieval for Cluttered Sc...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Rong, Xuejian Yi, Chucai Tian, Yingli CUNY City Coll New York NY 10031 USA HERE North Amer LLC Chicago IL USA
Text instance as one category of self-described objects provides valuable information for understanding and describing cluttered scenes. In this paper, we explore the task of unambiguous text localization and retrieva... 详细信息
来源: 评论
From Zero-shot Learning to Conventional Supervised Classification: Unseen Visual Data Synthesis  30
From Zero-shot Learning to Conventional Supervised Classific...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Long, Yang Liu, Li Shao, Ling Shen, Fumin Ding, Guiguang Han, Jungong Univ Sheffield Dept Elect & Elect Engn Sheffield S Yorkshire England Univ East Anglia Sch Comp Sci Norwich Norfolk England Univ Elect Sci & Technol China Ctr Future Media Chengdu Sichuan Peoples R China Tsinghua Univ Sch Software Beijing Peoples R China Northumbria Univ Dept Comp Sci & Digital Technol Newcastle Upon Tyne Tyne & Wear England
Robust object recognition systems usually rely on powerful feature extraction mechanisms from a large number of real images. However, in many realistic applications, collecting sufficient images for ever-growing new c... 详细信息
来源: 评论
Convex Global 3D Registration with Lagrangian Duality  30
Convex Global 3D Registration with Lagrangian Duality
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Briales, Jesus Gonzalez-Jimenez, Javier Univ Malaga MAPIR UMA Grp Malaga Spain
the registration of 3D models by a Euclidean transformation is a fundamental task at the core of many application in computer vision. this problem is non- convex due to the presence of rotational constraints, making t... 详细信息
来源: 评论
UntrimmedNets for Weakly Supervised Action recognition and Detection  30
UntrimmedNets for Weakly Supervised Action Recognition and D...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Limin Xiong, Yuanjun Lin, Dahua Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Chinese Univ Hong Kong Dept Informat Engn Hong Kong Hong Kong Peoples R China
Current action recognition methods heavily rely on trimmed videos for model training. However, it is expensive and time-consuming to acquire a large-scale trimmed video dataset. this paper presents a new weakly superv... 详细信息
来源: 评论
A Matrix Splitting Method for Composite Function Minimization  30
A Matrix Splitting Method for Composite Function Minimizatio...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yuan, Ganzhao Zheng, Wei-Shi Ghanem, Bernard KAUST Thuwal Saudi Arabia SYSU Sch Data & Comp Sci Guangzhou Guangdong Peoples R China Sun Yat Sen Univ Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou Guangdong Peoples R China
Composite function minimization captures a wide spectrum of applications in both computer vision and machine learning. It includes bound constrained optimization and cardinality regularized optimization as special cas... 详细信息
来源: 评论
AMVH: Asymmetric Multi-Valued Hashing  30
AMVH: Asymmetric Multi-Valued Hashing
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Da, Cheng Xu, Shibiao Ding, Kun Meng, Gaofeng Xiang, Shiming Pan, Chunhong Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing 100864 Peoples R China Univ Chinese Acad Sci Sch Comp & Control Engn Beijing Peoples R China
Most existing hashing methods resort to binary codes for similarity search, owing to the high efficiency of computation and storage. However, binary codes lack enough capability in similarity preservation, resulting i... 详细信息
来源: 评论
Quad-networks: unsupervised learning to rank for interest point detection  30
Quad-networks: unsupervised learning to rank for interest po...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Savinov, Nikolay Seki, Akihito Ladicky, L'ubor Sattler, Torsten Pollefeys, Marc Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Toshiba Co Ltd Tokyo Japan Microsoft Redmond WA USA
Several machine learning tasks require to represent the data using only a sparse set of interest points. An ideal detector is able to find the corresponding interest points even if the data undergo a transformation ty... 详细信息
来源: 评论