咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是441-450 订阅
排序:
BIND: Binary Integrated Net Descriptors for Texture-less Object recognition  30
BIND: Binary Integrated Net Descriptors for Texture-less Obj...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chan, Jacob Lee, Jimmy Addison Kemao, Qian Nanyang Technol Univ SCE Block N4 Nanyang Ave Singapore 639798 Singapore ASTAR I2R 1 Fusionopolis WayConnexis South Tower Singapore 138632 Singapore
this paper presents BIND (Binary Integrated Net Descriptor), a texture-less object detector that encodes multi-layered binary-represented nets for high precision edge-based description. Our proposed concept aligns lay... 详细信息
来源: 评论
Object-aware Dense Semantic Correspondence  30
Object-aware Dense Semantic Correspondence
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Fan Li, Xin Cheng, Hong Li, Jianping Chen, Leiting UESTC Sch Comp Sci & Engn Chengdu Sichuan Peoples R China UESTC Sch Automat Engn Ctr Robot Chengdu Sichuan Peoples R China
this work aims to build pixel-to-pixel correspondences between images from the same visual class but with different geometries and visual similarities. this task is particularly challenging because (i) their visual co... 详细信息
来源: 评论
Switching Convolutional Neural Network for Crowd Counting  30
Switching Convolutional Neural Network for Crowd Counting
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sam, Deepak Babu Surya, Shiv Babu, R. Venkatesh Indian Inst Sci Bangalore 560012 Karnataka India
We propose a novel crowd counting model that maps a given crowd scene to its density. Crowd analysis is compounded by myriad of factors like inter-occlusion between people due to extreme crowding, high similarity of a... 详细信息
来源: 评论
Learning Adaptive Receptive Fields for Deep Image Parsing Network  30
Learning Adaptive Receptive Fields for Deep Image Parsing Ne...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wei, Zhen Sun, Yao Wang, Jinqiao Lai, Hanjiang Liu, Si Chinese Acad Sci Inst Informat Engn State Key Lab Informat Secur SKLOIS Beijing 100093 Peoples R China Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing 100190 Peoples R China Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510275 Guangdong Peoples R China Univ Chinese Acad Sci Beijing 101408 Peoples R China
In this paper, we introduce a novel approach to regulate receptive field in deep image parsing network automatically. Unlike previous works which have stressed much importance on obtaining better receptive fields usin... 详细信息
来源: 评论
CERN: Confidence-Energy Recurrent Network for Group Activity recognition  30
CERN: Confidence-Energy Recurrent Network for Group Activity...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shu, Tianmin Todorovic, Sinisa Zhu, Song-Chun Univ Calif Los Angeles Los Angeles CA 90024 USA Oregon State Univ Corvallis OR 97331 USA
this work is about recognizing human activities occurring in videos at distinct semantic levels, including individual actions, interactions, and group activities. the recognition is realized using a two-level hierarch... 详细信息
来源: 评论
Deep TEN: Texture Encoding Network  30
Deep TEN: Texture Encoding Network
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Hang Xue, Jia Dana, Kristin Rutgers State Univ Dept Elect & Comp Engn New Brunswick NJ 08901 USA
We propose a Deep Texture Encoding Network (DeepTEN) with a novel Encoding Layer integrated on top of convolutional layers, which ports the entire dictionary learning and encoding pipeline into a single model. Current... 详细信息
来源: 评论
Analyzing computer vision Data - the Good, the Bad and the Ugly  30
Analyzing Computer Vision Data - The Good, the Bad and the U...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zendel, Oliver Honauer, Katrin Murschitz, Markus Humenberger, Martin Dominguez, Gustavo Fernandez Austrian Inst Technol Donau City Str 1 A-1220 Vienna Austria Heidelberg Univ IWR HCI Berliner Str 43 D-69120 Heidelberg Germany
In recent years, a great number of datasets were published to train and evaluate computer vision (CV) algorithms. these valuable contributions helped to push CV solutions to a level where they can be used for safety-r... 详细信息
来源: 评论
Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation  30
Noisy Softmax: Improving the Generalization Ability of DCNN ...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Binghui Deng, Weihong Du, Junping Beijing Univ Posts & Telecommun Sch Informat & Commun Engn Beijing Peoples R China Beijing Univ Posts & Telecommun Sch Comp Sci Beijing Peoples R China
Over the past few years, softmax and SGD have become a commonly used component and the default training strategy in CNN frameworks, respectively. However, when optimizing CNNs with SGD, the saturation behavior behind ... 详细信息
来源: 评论
Video Captioning with Transferred Semantic Attributes  30
Video Captioning with Transferred Semantic Attributes
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Pan, Yingwei Yao, Ting Li, Houqiang Mei, Tao Univ Sci & Technol China Hefei Anhui Peoples R China Microsoft Res Beijing Peoples R China
Automatically generating natural language descriptions of videos plays a fundamental challenge for computer vision community. Most recent progress in this problem has been achieved through employing 2-D and/or 3-D Con... 详细信息
来源: 评论
Fine-grained Image Classification via Combining vision and Language  30
Fine-grained Image Classification via Combining Vision and L...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: He, Xiangteng Peng, Yuxin Peking Univ Inst Comp Sci & Technol Beijing Peoples R China
Fine-grained image classification is a challenging task due to the large intra-class variance and small inter-class variance, aiming at recognizing hundreds of sub-categories belonging to the same basic-level category... 详细信息
来源: 评论