咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是501-510 订阅
排序:
Designing Energy-Efficient Convolutional Neural Networks using Energy-Aware Pruning  30
Designing Energy-Efficient Convolutional Neural Networks usi...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Tien-Ju Chen, Yu-Hsin Sze, Vivienne MIT Cambridge MA 02139 USA
Deep convolutional neural networks (CNNs) are indispensable to state-of-the-art computer vision algorithms. However, they are still rarely deployed on battery-powered mobile devices, such as smartphones and wearable g... 详细信息
来源: 评论
Neural Scene De-rendering  30
Neural Scene De-rendering
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wu, Jiajun Tenenbaum, Joshua B. Kohli, Pushmeet MIT CSAIL Cambridge MA 02139 USA Microsoft Res Bengaluru India
We study the problem of holistic scene understanding. We would like to obtain a compact, expressive, and interpretable representation of scenes that encodes information such as the number of objects and their categori... 详细信息
来源: 评论
Multigrid Neural Architectures  30
Multigrid Neural Architectures
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ke, Tsung-Wei Maire, Michael Yu, Stella X. Univ Calif Berkeley ICSI Berkeley CA 94720 USA TTI Chicago Chicago IL USA
We propose a multigrid extension of convolutional neural networks (CNNs). Rather than manipulating representations living on a single spatial grid, our network layers operate across scale space, on a pyramid of grids.... 详细信息
来源: 评论
Zero-Shot Action recognition with Error-Correcting Output Codes  30
Zero-Shot Action Recognition with Error-Correcting Output Co...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Qin, Jie Liu, Li Shao, Ling Shen, Fumin Ni, Bingbing Chen, Jiaxin Wang, Yunhong Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing Peoples R China Beihang Univ State Key Lab Virtual Real Technol & Syst Beijing Peoples R China ETH Comp Vis Lab Zurich Switzerland Malong Technol Co Ltd Shenzhen Peoples R China Univ East Anglia Norwich Norfolk England Univ Elect Sci & Technol China Chengdu Sichuan Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China
Recently, zero-shot action recognition (ZSAR) has emerged with the explosive growth of action categories. In this paper, we explore ZSAR from a novel perspective by adopting the Error-Correcting Output Codes (dubbed Z... 详细信息
来源: 评论
Spatiotemporal Pyramid Network for Video Action recognition  30
Spatiotemporal Pyramid Network for Video Action Recognition
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Yunbo Long, Mingsheng Wang, Jianmin Yu, Philip S. Tsinghua Univ MOE KLiss Beijing Peoples R China Tsinghua Univ TNList Beijing Peoples R China Tsinghua Univ NEL BDSS Beijing Peoples R China Tsinghua Univ Sch Software Beijing Peoples R China Univ Illinois Chicago IL 60680 USA
Two-stream convolutional networks have shown strong performance in video action recognition tasks. the key idea is to learn spatiotemporal features by fusing convolutional networks spatially and temporally. However, i... 详细信息
来源: 评论
Discriminative Covariance Oriented Representation Learning for Face recognition with Image Sets  30
Discriminative Covariance Oriented Representation Learning f...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Wen Wang, Ruiping Shan, Shiguang Chen, Xilin Chinese Acad Sci Key Lab Intelligent Informat Proc Inst Comp Technol Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China Cooperat Medianet Innovat Ctr Beijing Peoples R China
For face recognition with image sets, while most existing works mainly focus on building robust set models with hand-crafted feature, it remains a research gap to learn better image representations which can closely m... 详细信息
来源: 评论
A Deep Regression Architecture with Two-Stage Re-initialization for High Performance Facial Landmark Detection  30
A Deep Regression Architecture with Two-Stage Re-initializat...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lv, Jiangjing Shao, Xiaohu Xing, Junliang Cheng, Cheng Zhou, Xi Chinese Acad Sci Chongqing Inst Green & Intelligent Technol Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China
Regression based facial landmark detection methods usually learns a series of regression functions to update the landmark positions from an initial estimation. Most of existing approaches focus on learning effective m... 详细信息
来源: 评论
Deep Supervision with Shape Concepts for Occlusion-Aware 3D Object Parsing  30
Deep Supervision with Shape Concepts for Occlusion-Aware 3D ...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Chi Zia, M. Zeeshan Quoc-Huy Tran Yu, Xiang Hager, Gregory D. Chandraker, Manmohan Johns Hopkins Univ Baltimore MD 21218 USA NEC Labs Amer Princeton NJ USA Univ Calif San Diego San Diego CA USA
Monocular 3D object parsing is highly desirable in various scenarios including occlusion reasoning and holistic scene interpretation. We present a deep convolutional neural network (CNN) architecture to localize seman... 详细信息
来源: 评论
Modeling Sub-Event Dynamics in First-Person Action recognition  30
Modeling Sub-Event Dynamics in First-Person Action Recogniti...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zaki, Hasan F. M. Shafait, Faisal Mian, Ajmal Univ Western Australia Sch Comp Sci & Software Engn Nedlands WA Australia Natl Univ Sci & Technol Islamabad Pakistan Int Islamic Univ Malaysia Dept Mechatron Engn Kuala Lumpur Selangor Malaysia
First-person videos have unique characteristics such as heavy egocentric motion, strong preceding events, salient transitional activities and post-event impacts. Action recognition methods designed for third person vi... 详细信息
来源: 评论
Adversarial Discriminative Domain Adaptation  30
Adversarial Discriminative Domain Adaptation
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tzeng, Eric Hoffman, Judy Saenko, Kate Darrell, Trevor Univ Calif Berkeley Berkeley CA 94720 USA Stanford Univ Stanford CA 94305 USA Boston Univ Boston MA 02215 USA
Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. they can also improve recognition despite the presence of domain shift o... 详细信息
来源: 评论