咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是521-530 订阅
排序:
Weighted-Entropy-based Quantization for Deep Neural Networks  30
Weighted-Entropy-based Quantization for Deep Neural Networks
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Park, Eunhyeok Ahn, Junwhan Yoo, Sungjoo Seoul Natl Univ Comp & Memory Architecture Lab Seoul South Korea Seoul Natl Univ Design Automat Lab Seoul South Korea
Quantization is considered as one of the most effective methods to optimize the inference cost of neural network models for their deployment to mobile and embedded systems, which have tight resource constraints. In su... 详细信息
来源: 评论
Commonly Uncommon: Semantic Sparsity in Situation recognition  30
Commonly Uncommon: Semantic Sparsity in Situation Recognitio...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yatskar, Mark Ordonez, Vicente Zettlemoyer, Luke Farhadi, Ali Univ Washington Comp Sci & Engn Seattle WA 98195 USA Allen Inst Artificial Intelligence AI2 Seattle WA USA Univ Virginia Dept Comp Sci Charlottesville VA 22903 USA
Semantic sparsity is a common challenge in structured visual classification problems;when the output space is complex, the vast majority of the possible predictions are rarely, if ever, seen in the training set. this ... 详细信息
来源: 评论
CATS: A Color and thermal Stereo Benchmark  30
CATS: A Color and Thermal Stereo Benchmark
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Treible, Wayne Saponaro, Philip Sorensen, Scott Kolagunda, Abhishek O'Neal, Michael Phelan, Brian Sherbondy, Kelly Kambhamettu, Chandra Univ Delaware Newark DE 19716 USA US Army Res Lab Adelphi MD USA Vis Syst Inc Providence RI USA
Stereo matching is a well researched area using visible-band color cameras. thermal images are typically lower resolution, have less texture, and are noisier compared to their visible-band counterparts and are more ch... 详细信息
来源: 评论
Deep Co-occurrence Feature Learning for Visual Object recognition  30
Deep Co-occurrence Feature Learning for Visual Object Recogn...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shih, Ya-Fang Yeh, Yang-Ming Lin, Yen-Yu Weng, Ming-Fang Lu, Yi-Chang Chuang, Yung-Yu Acad Sinica Res Ctr Informat Technol Innovat Taipei Taiwan Natl Taiwan Univ Dept Comp Sci & Informat Engn Taipei Taiwan Natl Taiwan Univ Grad Inst Elect Engn Taipei Taiwan Inst Informat Ind Smart Network Syst Inst Taipei Taiwan
this paper addresses three issues in integrating part-based representations into convolutional neural networks (CNNs) for object recognition. First, most part-based models rely on a few pre-specified object parts. How... 详细信息
来源: 评论
Improving training of deep neural networks via Singular Value Bounding  30
Improving training of deep neural networks via Singular Valu...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Jia, Kui Tao, Dacheng Gao, Shenghua Xu, Xiangmin South China Univ Technol Sch Elect & Informat Engn Guangzhou Guangdong Peoples R China Univ Sydney UBTech Sydney AI Inst SIT FEIT Sydney NSW Australia ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China
Deep learning methods achieve great success recently on many computer vision problems. In spite of these practical successes, optimization of deep networks remains an active topic in deep learning research. In this wo... 详细信息
来源: 评论
G2DeNet: Global Gaussian Distribution Embedding Network and Its Application to Visual recognition  30
G<SUP>2</SUP>DeNet: Global Gaussian Distribution Embedding N...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Qilong Li, Peihua Zhang, Lei Dalian Univ Technol Dalian Peoples R China Hong Kong Polytech Univ Hong Kong Hong Kong Peoples R China
Recently, plugging trainable structural layers into deep convolutional neural networks (CNNs) as image representations has made promising progress. However, there has been little work on inserting parametric probabili... 详细信息
来源: 评论
Learning Spatial Regularization with Image-level Supervisions for Multi-label Image Classification  30
Learning Spatial Regularization with Image-level Supervision...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Feng Li, Hongsheng Ouyang, Wanli Yu, Nenghai Wang, Xiaogang Univ Sci & Technol China Hefei Anhui Peoples R China Univ Sydney Sydney NSW Australia Chinese Univ Hong Kong Dept Elect Engn Hong Kong Hong Kong Peoples R China
Multi-label image classification is a fundamental but challenging task in computer vision. Great progress has been achieved by exploiting semantic relations between labels in recent years. However, conventional approa... 详细信息
来源: 评论
Deep Joint Rain Detection and Removal from a Single Image  30
Deep Joint Rain Detection and Removal from a Single Image
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Wenhan Tan, Robby T. Feng, Jiashi Liu, Jiaying Guo, Zongming Yan, Shuicheng Peking Univ Inst Comp Sci & Technol Beijing Peoples R China Natl Univ Singapore Singapore Singapore Yale NUS Coll Singapore Singapore 360 AI Inst Beijing Peoples R China
In this paper, we address a rain removal problem from a single image, even in the presence of heavy rain and rain streak accumulation. Our core ideas lie in our new rain image model and new deep learning architecture.... 详细信息
来源: 评论
Not Afraid of the Dark: NIR-VIS Face recognition via Cross-spectral Hallucination and Low-rank Embedding  30
Not Afraid of the Dark: NIR-VIS Face Recognition via Cross-s...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lezama, Jose Qiu, Qiang Sapiro, Guillermo Univ Republica IIE Montevideo Uruguay Duke Univ ECE Durham NC 27706 USA
Surveillance cameras today often capture NIR (near in-frared) images in low-light environments. However, most face datasets accessible for training and verification are only collected in the VIS (visible light) spectr... 详细信息
来源: 评论
Removing rain from single images via a deep detail network  30
Removing rain from single images via a deep detail network
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Fu, Xueyang Huang, Jiabin Zeng, Delu Huang, Yue Ding, Xinghao Paisley, John Xiamen Univ Minist Educ Key Lab Underwater Acoust Commun & Marine Informa Xiamen Peoples R China Xiamen Univ Sch Informat Sci & Engn Xiamen Peoples R China South China Univ Technol Sch Math Guangzhou Guangdong Peoples R China Columbia Univ Dept Elect Engn New York NY 10027 USA Columbia Univ Data Sci Inst New York NY 10027 USA
We propose a new deep network architecture for removing rain streaks from individual images based on the deep convolutional neural network (CNN). Inspired by the deep residual network (ResNet) that simplifies the lear... 详细信息
来源: 评论