咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是51-60 订阅
排序:
Accurate Localization of 3D Objects from RGB-D Data using Segmentation Hypotheses
Accurate Localization of 3D Objects from RGB-D Data using Se...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Kim, Byung-soo Xu, Shili Savarese, Silvio Univ Michigan Ann Arbor MI 48109 USA
In this paper we focus on the problem of detecting objects in 3D from RGB-D images. We propose a novel framework that explores the compatibility between segmentation hypotheses of the object in the image and the corre... 详细信息
来源: 评论
First-Person Activity recognition: What Are they Doing to Me?
First-Person Activity Recognition: What Are They Doing to Me...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Ryoo, M. S. Matthies, Larry CALTECH Jet Prop Lab Pasadena CA 91125 USA
this paper discusses the problem of recognizing interaction-level human activities from a first-person viewpoint. the goal is to enable an observer (e.g., a robot or a wearable camera) to understand 'what activity... 详细信息
来源: 评论
Light Field Distortion Feature for Transparent Object recognition
Light Field Distortion Feature for Transparent Object Recogn...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Maeno, Kazuki Nagahara, Hajime Shimada, Atsushi Taniguchi, Rin-ichiro Kyushu Univ Grad Sch Informat Sci & Elect Engn Nishi Ku Fukuoka 8190395 Japan
Current object-recognition algorithms use local features, such as scale-invariant feature transform (SIFT) and speeded-up robust features (SURF), for visually learning to recognize objects. these approaches though can... 详细信息
来源: 评论
It's Not Polite To Point: Describing People With Uncertain Attributes
It's Not Polite To Point: Describing People With Uncertain A...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Sadovnik, Amir Gallagher, Andrew Chen, Tsuhan Cornell Univ Sch Elect & Comp Engn Ithaca NY 14853 USA
Visual attributes are powerful features for many different applications in computer vision such as object detection and scene recognition. Visual attributes present another application that has not been examined as ri... 详细信息
来源: 评论
Cartesian k-means
Cartesian k-means
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Norouzi, Mohammad Fleet, David J. Univ Toronto Dept Comp Sci Toronto ON M5S 1A1 Canada
A fundamental limitation of quantization techniques like the k-means clustering algorithm is the storage and run-time cost associated with the large numbers of clusters required to keep quantization errors small and m... 详细信息
来源: 评论
Discriminative Sub-categorization
Discriminative Sub-categorization
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Hoai, Minh Zisserman, Andrew Univ Oxford Oxford England
the objective of this work is to learn sub-categories. Rather than casting this as a problem of unsupervised clustering, we investigate a weakly supervised approach using both positive and negative samples of the cate... 详细信息
来源: 评论
Bilinear Programming for Human Activity recognition with Unknown MRF Graphs
Bilinear Programming for Human Activity Recognition with Unk...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Wang, Zhenhua Shi, Qinfeng Shen, Chunhua van den Hengel, Anton Univ Adelaide Sch Comp Sci Adelaide SA 5005 Australia
Markov Random Fields (MRFs) have been successfully applied to human activity modelling, largely due to their ability to model complex dependencies and deal with local uncertainty. However, the underlying graph structu... 详细信息
来源: 评论
Watching Unlabeled Video Helps Learn New Human Actions from Very Few Labeled Snapshots
Watching Unlabeled Video Helps Learn New Human Actions from ...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Chen, Chao-Yeh Grauman, Kristen Univ Texas Austin Austin TX 78712 USA
We propose an approach to learn action categories from static images that leverages prior observations of generic human motion to augment its training process. Using unlabeled video containing various human activities... 详细信息
来源: 评论
Wide-baseline Hair Capture using Strand-based Refinement
Wide-baseline Hair Capture using Strand-based Refinement
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Luo, Linjie Zhang, Cha Zhang, Zhengyou Rusinkiewicz, Szymon Princeton Univ Princeton NJ 08544 USA Microsoft Res Redmond WA USA
We propose a novel algorithm to reconstruct the 3D geometry of human hairs in wide-baseline setups using strand-based refinement. the hair strands are first extracted in each 2D view, and projected onto the 3D visual ... 详细信息
来源: 评论
Poselet Key-framing: A Model for Human Activity recognition
Poselet Key-framing: A Model for Human Activity Recognition
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Raptis, Michalis Sigal, Leonid Disney Res Pittsburgh PA 15213 USA
In this paper, we develop a new model for recognizing human actions. An action is modeled as a very sparse sequence of temporally local discriminative keyframes - collections of partial key-poses of the actor(s), depi... 详细信息
来源: 评论