咨询与建议

限定检索结果

文献类型

  • 1,535 篇 会议
  • 21 册 图书
  • 13 篇 期刊文献

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,449 篇 工学
    • 1,046 篇 计算机科学与技术...
    • 655 篇 机械工程
    • 358 篇 电气工程
    • 111 篇 软件工程
    • 55 篇 控制科学与工程
    • 49 篇 信息与通信工程
    • 35 篇 光学工程
    • 28 篇 仪器科学与技术
    • 17 篇 网络空间安全
    • 15 篇 生物工程
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 8 篇 安全科学与工程
    • 7 篇 测绘科学与技术
    • 4 篇 化学工程与技术
    • 3 篇 建筑学
  • 112 篇 医学
    • 108 篇 临床医学
    • 6 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 87 篇 理学
    • 38 篇 物理学
    • 34 篇 数学
    • 24 篇 生物学
    • 12 篇 统计学(可授理学、...
    • 9 篇 系统科学
    • 5 篇 化学
  • 42 篇 管理学
    • 32 篇 图书情报与档案管...
    • 10 篇 管理科学与工程(可...
  • 24 篇 艺术学
    • 24 篇 设计学(可授艺术学...
  • 19 篇 法学
    • 19 篇 社会学
  • 15 篇 文学
    • 15 篇 新闻传播学
  • 2 篇 教育学
  • 2 篇 农学
  • 1 篇 经济学

主题

  • 528 篇 computer vision
  • 139 篇 face recognition
  • 135 篇 pattern recognit...
  • 135 篇 feature extracti...
  • 130 篇 cameras
  • 129 篇 image segmentati...
  • 128 篇 object recogniti...
  • 115 篇 object detection
  • 103 篇 training
  • 98 篇 robustness
  • 94 篇 images
  • 92 篇 image recognitio...
  • 90 篇 shape
  • 90 篇 layout
  • 84 篇 visualization
  • 77 篇 image reconstruc...
  • 76 篇 humans
  • 70 篇 computer science
  • 66 篇 computational mo...
  • 66 篇 image classifica...

机构

  • 23 篇 rhein westfal th...
  • 18 篇 carnegie mellon ...
  • 16 篇 chinese acad sci...
  • 15 篇 stanford univ st...
  • 14 篇 univ chinese aca...
  • 11 篇 australian natl ...
  • 11 篇 univ calif berke...
  • 10 篇 univ sci & techn...
  • 10 篇 mit cambridge ma...
  • 10 篇 univ maryland co...
  • 9 篇 microsoft res as...
  • 9 篇 univ washington ...
  • 8 篇 microsoft resear...
  • 8 篇 microsoft res re...
  • 8 篇 natl univ singap...
  • 7 篇 chinese univ hon...
  • 7 篇 tech univ munich...
  • 6 篇 mpi intelligent ...
  • 6 篇 kaust thuwal
  • 6 篇 imperial coll lo...

作者

  • 20 篇 leibe bastian
  • 12 篇 ji qiang
  • 10 篇 li stan z.
  • 9 篇 pal umapada
  • 8 篇 zhang lei
  • 8 篇 chellappa rama
  • 8 篇 lei zhen
  • 8 篇 zafeiriou stefan...
  • 8 篇 hu weiming
  • 8 篇 hua gang
  • 7 篇 ramanan deva
  • 7 篇 wang xiaogang
  • 7 篇 yan shuicheng
  • 7 篇 mubarak shah
  • 6 篇 van gool luc
  • 6 篇 darrell trevor
  • 6 篇 luiten jonathon
  • 6 篇 pollefeys marc
  • 6 篇 bischof horst
  • 6 篇 ghanem bernard

语言

  • 1,554 篇 英文
  • 9 篇 土耳其文
  • 2 篇 日文
  • 2 篇 其他
  • 1 篇 西班牙文
  • 1 篇 中文
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR"
1569 条 记 录,以下是941-950 订阅
排序:
A Bayesian Approach to Multimodal Visual Dictionary Learning
A Bayesian Approach to Multimodal Visual Dictionary Learning
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Irie, Go Liu, Dong Li, Zhenguo Chang, Shih-Fu NTT Corp Atsugi Kanagawa Japan Columbia Univ New York NY 10027 USA
Despite significant progress, most existing visual dictionary learning methods rely on image descriptors alone or together with class labels. However, Web images are often associated with text data which may carry sub... 详细信息
来源: 评论
Bottom-up Segmentation for Top-down Detection
Bottom-up Segmentation for Top-down Detection
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Fidler, Sanja Mottaghi, Roozbeh Yuille, Alan Urtasun, Raquel TTI Chicago Chicago IL 60637 USA
In this paper we are interested in how semantic segmentation can help object detection. Towards this goal, we propose a novel deformable part-based model which exploits region-based segmentation algorithms that comput... 详细信息
来源: 评论
Nonlinearly Constrained MRFs: Exploring the Intrinsic Dimensions of Higher-Order Cliques
Nonlinearly Constrained MRFs: Exploring the Intrinsic Dimens...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Zeng, Yun Wang, Chaohui Soatto, Stefano Yau, Shing-Tung Harvard Univ Cambridge MA 02138 USA Univ Calif Los Angeles Los Angeles CA USA
this paper introduces an efficient approach to integrating non-local statistics into the higher-order Markov Random Fields (MRFs) framework. Motivated by the observation that many non-local statistics (e.g., shape pri... 详细信息
来源: 评论
Augmenting CRFs with Boltzmann Machine Shape Priors for Image Labeling
Augmenting CRFs with Boltzmann Machine Shape Priors for Imag...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Kae, Andrew Sohn, Kihyuk Lee, Honglak Learned-Miller, Erik Univ Massachusetts Amherst MA 01003 USA Univ Michigan Ann Arbor MI 48109 USA
Conditional random fields (CRFs) provide powerful tools for building models to label image segments. they are particularly well-suited to modeling local interactions among adjacent regions (e.g., superpixels). However... 详细信息
来源: 评论
Efficient Computation of Shortest Path-Concavity for 3D Meshes
Efficient Computation of Shortest Path-Concavity for 3D Mesh...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Zimmer, Henrik Campen, Marcel Kobbelt, Leif Rhein Westfal TH Aachen Comp Graph Grp Aachen Germany
In the context of shape segmentation and retrieval object-wide distributions of measures are needed to accurately evaluate and compare local regions of shapes. Lien et al. [16] proposed two point-wise concavity measur... 详细信息
来源: 评论
Unconstrained Monocular 3D Human Pose Estimation by Action Detection and Cross-modality Regression Forest
Unconstrained Monocular 3D Human Pose Estimation by Action D...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Yu, Tsz-Ho Kim, Tae-Kyun Cipolla, Roberto Univ Cambridge Cambridge England Imperial Coll London London England
this work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-depend... 详细信息
来源: 评论
Continuous 3D Face Authentication using RGB-D Cameras
Continuous 3D Face Authentication using RGB-D Cameras
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Segundo, Mauricio Pamplona Sarkar, Sudeep Goldgof, Dmitry Silva, Luciano Bellon, Olga Univ S Florida Tampa FL 33620 USA Univ Fed Prana IMAGO Res Grp Parana Brazil
We present a continuous 3D face authentication system that uses a RGB-D camera to monitor the accessing user and ensure that only the allowed user uses a protected system. At the best of our knowledge, this is the fir... 详细信息
来源: 评论
Translation Symmetry Detection: A Repetitive pattern Analysis Approach
Translation Symmetry Detection: A Repetitive Pattern Analysi...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Cai, Yunliang Baciu, George Hong Kong Polytech Univ Dept Comp GAMA Lab Hong Kong Hong Kong Peoples R China
Translation symmetry is one of the most important pattern characteristics in natural and man-made environments. Detecting translation symmetry is a grand challenge in computer vision. this has a large spectrum of real... 详细信息
来源: 评论
Exploring Implicit Image Statistics for Visual Representativeness Modeling
Exploring Implicit Image Statistics for Visual Representativ...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Sun, Xiaoshuai Wang, Xin-Jing Yao, Hongxun Zhang, Lei Harbin Inst Technol Sch Comp Sci & Technol Harbin 150006 Peoples R China Microsoft Res Asia Beijing Peoples R China
In this paper, we propose a computational model of visual representativeness by integrating cognitive theories of representativeness heuristics with computer vision and machine learning techniques. Unlike previous mod... 详细信息
来源: 评论
Fast Energy Minimization using Learned State Filters
Fast Energy Minimization using Learned State Filters
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Guillaumin, Matthieu Van Gool, Luc Ferrari, Vittorio Swiss Fed Inst Technol Zurich Switzerland Katholieke Univ Leuven Leuven Belgium Univ Edinburgh Edinburgh EH8 9YL Midlothian Scotland
Pairwise discrete energies defined over graphs are ubiquitous in computer vision. Many algorithms have been proposed to minimize such energies, often concentrating on sparse graph topologies or specialized classes of ... 详细信息
来源: 评论