咨询与建议

限定检索结果

文献类型

  • 654 篇 会议
  • 2 册 图书

馆藏范围

  • 656 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 648 篇 工学
    • 406 篇 机械工程
    • 298 篇 计算机科学与技术...
    • 17 篇 电气工程
    • 14 篇 软件工程
    • 11 篇 光学工程
    • 4 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 生物工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
  • 14 篇 理学
    • 11 篇 物理学
    • 5 篇 数学
    • 3 篇 生物学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 251 篇 computer vision
  • 94 篇 image segmentati...
  • 90 篇 cameras
  • 86 篇 layout
  • 84 篇 feature extracti...
  • 83 篇 face recognition
  • 82 篇 object recogniti...
  • 76 篇 object detection
  • 74 篇 image recognitio...
  • 71 篇 humans
  • 70 篇 shape
  • 68 篇 robustness
  • 66 篇 computer science
  • 63 篇 image reconstruc...
  • 54 篇 image classifica...
  • 54 篇 learning (artifi...
  • 49 篇 application soft...
  • 49 篇 image motion ana...
  • 41 篇 image representa...
  • 40 篇 testing

机构

  • 8 篇 microsoft resear...
  • 6 篇 microsoft res as...
  • 4 篇 robotics institu...
  • 4 篇 carnegie mellon ...
  • 4 篇 department of co...
  • 4 篇 univ illinois ur...
  • 4 篇 microsoft res re...
  • 4 篇 department of co...
  • 4 篇 mit cambridge ma...
  • 4 篇 carnegie mellon ...
  • 4 篇 cornell univ ith...
  • 4 篇 department of co...
  • 4 篇 stanford univ st...
  • 4 篇 carnegie mellon ...
  • 3 篇 penn state univ ...
  • 3 篇 nanyang technol ...
  • 3 篇 univ michigan an...
  • 3 篇 univ adelaide sc...
  • 3 篇 school of comput...
  • 3 篇 georgia institut...

作者

  • 6 篇 mubarak shah
  • 6 篇 tsuhan chen
  • 5 篇 shiguang shan
  • 5 篇 daniel cremers
  • 5 篇 xilin chen
  • 5 篇 nikos paragios
  • 5 篇 wen gao
  • 5 篇 yanxi liu
  • 4 篇 nassir navab
  • 4 篇 zhang lei
  • 4 篇 jan-michael frah...
  • 4 篇 li stan z.
  • 4 篇 thomas huang
  • 4 篇 vincent lepetit
  • 4 篇 tieniu tan
  • 4 篇 svetha venkatesh
  • 4 篇 narendra ahuja
  • 4 篇 alan yuille
  • 4 篇 de la torre fern...
  • 4 篇 liang wang

语言

  • 653 篇 英文
  • 2 篇 土耳其文
  • 1 篇 其他
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013"
656 条 记 录,以下是491-500 订阅
排序:
Small Codes and Large Image Databases for recognition
Small Codes and Large Image Databases for Recognition
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.7
作者: Antonio Torralba Rob Fergus Yair Weiss MIT Cambridge MA USA Courant Institute NYU New York NY USA School of Computer Science Hebrew University Jerusalem Israel
the Internet contains billions of images, freely available online. Methods for efficiently searching this incredibly rich resource are vital for a large number of applications. these include object recognition [2], co... 详细信息
来源: 评论
Taylor Expansion Based Classifier Adaptation: Application to Person Detection
Taylor Expansion Based Classifier Adaptation: Application to...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.11
作者: Cha Zhang Raffay Hamid Zhengyou Zhang Microsoft Research Redmond WA Georgia Institute of Technology Atlanta GA Microsoft Research Redmond WA USA
Because of the large variation across different environments, a generic classifier trained on extensive data-sets may perform sub-optimally in a particular test environment. In this paper, we present a general framewo... 详细信息
来源: 评论
Online Learning of Patch Perspective Rectification for Efficient Object Detection
Online Learning of Patch Perspective Rectification for Effic...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.5
作者: Stefan Hinterstoisser Selim Benhimane Nassir Navab Pascal Fua Vincent Lepetit Department of Computer Science Technical University Munich Garching Germany Computer Vision Laboratory École Polytechnique Fédérale de Lausanne Lausanne Switzerland
For a large class of applications, there is time to train the system. In this paper, we propose a learning-based approach to patch perspective rectification, and show that it is both faster and more reliable than stat... 详细信息
来源: 评论
Learning Cross-Domain Landmarks for Heterogeneous Domain Adaptation
Learning Cross-Domain Landmarks for Heterogeneous Domain Ada...
收藏 引用
ieee conference on computer vision and pattern recognition
作者: Yao-Hung Hubert Tsai Yi-Ren Yeh Yu-Chiang Frank Wang Res. Center for IT Innovation Taipei Taiwan Dept. of Math. Nat. Kaohsiung Normal Univ. Kaohsiung Taiwan
While domain adaptation (DA) aims to associate the learning tasks across data domains, heterogeneous domain adaptation (HDA) particularly deals with learning from cross-domain data which are of different types of feat... 详细信息
来源: 评论
Image De-fencing
Image De-fencing
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.4
作者: Yanxi Liu Tamara Belkina James H. Hays Roberto Lublinerman Department of Electrical Engineering The Pennsylvania State University USA Department of Computer Science and Engineering Computer Science Department Carnegie Mellon University USA Department of Computer Science and Engineering Pennsylvania State University USA
We introduce a novel image segmentation algorithm that uses translational symmetry as the primary foreground/background separation cue. We investigate the process of identifying and analyzing image regions that presen... 详细信息
来源: 评论
Face Shape Recovery from a Single Image Using CCA Mapping between Tensor Spaces
Face Shape Recovery from a Single Image Using CCA Mapping be...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.1
作者: Zhen Lei Qinqun Bai Ran He Stan Z. Li Center for Biometrics and Security Research & National Laboratory of Pattern Recognition Institute of Automation Chinese Academy and Sciences Beijing China
In this paper, we propose a new approach for face shape recovery from a single image. A single near infrared (NIR) image is used as the input, and a mapping from the NIR tensor space to 3D tensor space, learned by usi... 详细信息
来源: 评论
Tensor Reduction Error Analysis - Applications to Video Compression and Classification
Tensor Reduction Error Analysis - Applications to Video Comp...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.10
作者: Chris Ding Heng Huang Dijun Luo Computer Science and Engineering Department University of Technology Arlington TX USA
Tensor based dimensionality reduction has recently been extensively studied for computer vision applications. To our knowledge, however, there exist no rigorous error analysis on these methods. Here we provide the fir... 详细信息
来源: 评论
A Rank Constrained Continuous Formulation of Multi-frame Multi-target Tracking Problem
A Rank Constrained Continuous Formulation of Multi-frame Mul...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.6
作者: Khurram Shafique Mun Wai Lee Niels Haering ObjectVideo center for Video Understanding Excellence슠at ObjectVideo Reston VA USA
this paper presents a multi-frame data association algorithm for tracking multiple targets in video sequences. Multi-frame data association involves finding the most probable correspondences between target tracks and ... 详细信息
来源: 评论
Classification via Semi-Riemannian Spaces
Classification via Semi-Riemannian Spaces
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.1
作者: Deli Zhao Zhouchen Lin Xiaoou Tang Department of Information Engineering Chinese University of Hong Kong Hong Kong China Microsoft Research Asia Beijing China
In this paper, we develop a geometric framework for linear or nonlinear discriminant subspace learning and classification. In our framework, the structures of classes are conceptualized as a semi-Riemannian manifold w... 详细信息
来源: 评论
Non-Negative Graph Embedding
Non-Negative Graph Embedding
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.8
作者: Jianchao Yang Shuicheng Yang Yun Fu Xuelong Li thomas Huang ECE Department University of Illinois Urbana-Champaign USA ECE Department National University of Singapore Singapore School of CSIS University of London UK
We introduce a general formulation, called non-negative graph embedding, for non-negative data decomposition by integrating the characteristics of both intrinsic and penalty graphs [17]. In the past, such a decomposit... 详细信息
来源: 评论