咨询与建议

限定检索结果

文献类型

  • 654 篇 会议
  • 2 册 图书

馆藏范围

  • 656 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 648 篇 工学
    • 406 篇 机械工程
    • 298 篇 计算机科学与技术...
    • 17 篇 电气工程
    • 14 篇 软件工程
    • 11 篇 光学工程
    • 4 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 生物工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
  • 14 篇 理学
    • 11 篇 物理学
    • 5 篇 数学
    • 3 篇 生物学
    • 2 篇 系统科学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 药学(可授医学、理...

主题

  • 251 篇 computer vision
  • 94 篇 image segmentati...
  • 90 篇 cameras
  • 86 篇 layout
  • 84 篇 feature extracti...
  • 83 篇 face recognition
  • 82 篇 object recogniti...
  • 76 篇 object detection
  • 74 篇 image recognitio...
  • 71 篇 humans
  • 70 篇 shape
  • 68 篇 robustness
  • 66 篇 computer science
  • 63 篇 image reconstruc...
  • 54 篇 image classifica...
  • 54 篇 learning (artifi...
  • 49 篇 application soft...
  • 49 篇 image motion ana...
  • 41 篇 image representa...
  • 40 篇 testing

机构

  • 8 篇 microsoft resear...
  • 6 篇 microsoft res as...
  • 4 篇 robotics institu...
  • 4 篇 carnegie mellon ...
  • 4 篇 department of co...
  • 4 篇 univ illinois ur...
  • 4 篇 microsoft res re...
  • 4 篇 department of co...
  • 4 篇 mit cambridge ma...
  • 4 篇 carnegie mellon ...
  • 4 篇 cornell univ ith...
  • 4 篇 department of co...
  • 4 篇 stanford univ st...
  • 4 篇 carnegie mellon ...
  • 3 篇 penn state univ ...
  • 3 篇 nanyang technol ...
  • 3 篇 univ michigan an...
  • 3 篇 univ adelaide sc...
  • 3 篇 school of comput...
  • 3 篇 georgia institut...

作者

  • 6 篇 mubarak shah
  • 6 篇 tsuhan chen
  • 5 篇 shiguang shan
  • 5 篇 daniel cremers
  • 5 篇 xilin chen
  • 5 篇 nikos paragios
  • 5 篇 wen gao
  • 5 篇 yanxi liu
  • 4 篇 nassir navab
  • 4 篇 zhang lei
  • 4 篇 jan-michael frah...
  • 4 篇 li stan z.
  • 4 篇 thomas huang
  • 4 篇 vincent lepetit
  • 4 篇 tieniu tan
  • 4 篇 svetha venkatesh
  • 4 篇 narendra ahuja
  • 4 篇 alan yuille
  • 4 篇 de la torre fern...
  • 4 篇 liang wang

语言

  • 653 篇 英文
  • 2 篇 土耳其文
  • 1 篇 其他
检索条件"任意字段=26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2013"
656 条 记 录,以下是501-510 订阅
排序:
Fusion of Time-of-Flight Depth and Stereo for High Accuracy Depth Maps
Fusion of Time-of-Flight Depth and Stereo for High Accuracy ...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.10
作者: Jiejie Zhu Liang Wang Ruigang Yang James Davis Center for Visualization and Virtual Environments University of Kentucky USA Computer Science Department University of California Santa Cruz USA
Time-of-flight range sensors have error characteristics which are complementary to passive stereo. they provide real time depth estimates in conditions where passive stereo does not work well, such as on white walls. ... 详细信息
来源: 评论
Locally Adaptive Learning for Translation-Variant MRF Image Priors
Locally Adaptive Learning for Translation-Variant MRF Image ...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.1
作者: Masayuki Tanaka Masatoshi Okutomi Tokyo Institute of Technology Tokyo Japan
Markov random field (MRF) models are a powerful tool in machine vision applications. However, learning the model parameters is still a challenging problem and a burdensome task. the main contribution of this paper is ... 详细信息
来源: 评论
Sparsity, Redundancy and Optimal Image Support towards Knowledge-based Segmentation
Sparsity, Redundancy and Optimal Image Support towards Knowl...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.4
作者: Salma Essafi Georg Langs Nikos Paragios Equipe GALEN INRIA Saclay-Ile-de-France Orsay France Laboratoire MAS Ecole Centrale Paris Malabry France
In this paper, we propose a novel approach to model shape variations. It encodes sparsity, exploits geometric redundancy, and accounts for the different degrees of local variation and image support. In this context we... 详细信息
来源: 评论
Regularizing 3D Medial Axis Using Medial Scaffold Transforms
Regularizing 3D Medial Axis Using Medial Scaffold Transforms
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.6
作者: Ming-Ching Chang Benjamin B. Kimia LEMS Engineering Brown University USA
this paper addresses a key bottleneck in the use of the 3D medial axis (MA) representation, namely, how the complex MA structure can be regularized so that similar, within-category 3D shapes yield similar 3D MA that a... 详细信息
来源: 评论
Motion Segmentation via Robust Subspace Separation in the Presence of Outlying, Incomplete, or Corrupted Trajectories
Motion Segmentation via Robust Subspace Separation in the Pr...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.3
作者: Shankar R. Rao Roberto Tron Rene Vidal Yi Ma Coordinated Science Laboratory University of Illinois Urbana-Champaign USA Center for Imaging Science Johns Hopkins University USA
We examine the problem of segmenting tracked feature point trajectories of multiple moving objects in an image sequence. Using the affine camera model, this motion segmentation problem can be cast as the problem of se... 详细信息
来源: 评论
Learning Class-Specific Affinities for Image Labelling
Learning Class-Specific Affinities for Image Labelling
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.3
作者: Dhruv Batra Rahul Sukthankar Tsuhan Chen Carnegie Mellon University USA Intel Research Pittsburgh USA
Spectral clustering and eigenvector-based methods have become increasingly popular in segmentation and recognition. Although the choice of the pairwise similarity metric (or affinities) greatly influences the quality ... 详细信息
来源: 评论
Multiplicative Kernels: Object Detection, Segmentation and Pose Estimation
Multiplicative Kernels: Object Detection, Segmentation and P...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.10
作者: Quan Yuan Ashwin thangali Vitaly Ablavsky Stan Sclaroff Computer Science Department Boston University USA
Object detection is challenging when the object class exhibits large within-class variations. In this work, we show that foreground-background classification (detection) and within-class classification of the foregrou... 详细信息
来源: 评论
Unsupervised estimation of segmentation quality using nonnegative factorization
Unsupervised estimation of segmentation quality using nonneg...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.3
作者: Roman Sandler Michael Lindenbaum Computer Science Department Technion-Israel Institute of Technology Haifa Israel
We propose an unsupervised method for evaluating image segmentation. Common methods are typically based on evaluating smoothness within segments and contrast between them, and the measure they provide is not explicitl... 详细信息
来源: 评论
Randomized Trees for Human Pose Detection
Randomized Trees for Human Pose Detection
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.7
作者: Gregory Rogez Jonathan Rihan Srikumar Ramalingam Carlos Orrite Philip H. S. Torr Computer Vision Lab-I3A University of Zaragoza Spain Department of Computing Oxford Brookes University UK
this paper addresses human pose recognition from video sequences by formulating it as a classification problem. Unlike much previous work we do not make any assumptions on the availability of clean segmentation. the f... 详细信息
来源: 评论
Discovering Class Specific Composite Features through Discriminative Sampling with Swendsen-Wang Cut
Discovering Class Specific Composite Features through Discri...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr 2008), vol.1
作者: Feng Han Ying Shan Harpreet S. Sawhney Rakesh Kumar Sarnoff Corporation Princeton NJ USA One Microsoft Way Redmond Microsoft Corporation Washington D.C. DC USA
this paper proposes a novel approach to discover a set of class specific "composite features" as the feature pool for the detection and classification of complex objects using AdaBoost. Each composite featur... 详细信息
来源: 评论