咨询与建议

限定检索结果

文献类型

  • 220 篇 会议
  • 5 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 227 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 217 篇 工学
    • 203 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 20 篇 机械工程
    • 4 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 4 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 7 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 44 篇 computer vision
  • 24 篇 pattern recognit...
  • 23 篇 object recogniti...
  • 20 篇 images
  • 15 篇 face recognition
  • 11 篇 object detection
  • 9 篇 action recogniti...
  • 9 篇 training
  • 8 篇 image segmentati...
  • 8 篇 feature extracti...
  • 7 篇 image classifica...
  • 6 篇 cameras
  • 6 篇 gesture recognit...
  • 6 篇 dataset
  • 6 篇 machine learning
  • 6 篇 recognition
  • 5 篇 deep learning
  • 5 篇 visualization
  • 5 篇 image recognitio...
  • 5 篇 shape

机构

  • 6 篇 chinese acad sci...
  • 4 篇 chinese univ hon...
  • 4 篇 mpi intelligent ...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ washington ...
  • 3 篇 univ oxford oxfo...
  • 3 篇 hong kong univ s...
  • 3 篇 mit cambridge ma...
  • 3 篇 univ calif berke...
  • 2 篇 inria
  • 2 篇 stevens inst tec...
  • 2 篇 univ calif river...
  • 2 篇 univ toronto on
  • 2 篇 rensselaer polyt...
  • 2 篇 georgia inst tec...
  • 2 篇 swiss fed inst t...
  • 2 篇 chinese acad sci...
  • 2 篇 chinese acad sci...
  • 2 篇 natl univ singap...
  • 2 篇 swiss fed inst t...

作者

  • 4 篇 hu weiming
  • 3 篇 yuan chunfeng
  • 3 篇 li stan z.
  • 3 篇 lu cewu
  • 3 篇 wen longyin
  • 3 篇 jia jiaya
  • 3 篇 murala subrahman...
  • 3 篇 ji qiang
  • 3 篇 salzmann mathieu
  • 3 篇 shao ling
  • 3 篇 vedaldi andrea
  • 3 篇 yan shuicheng
  • 3 篇 vipparthi santos...
  • 3 篇 brandt jonathan
  • 3 篇 hua gang
  • 2 篇 kannala juho
  • 2 篇 cucchiara rita
  • 2 篇 ling haibin
  • 2 篇 wang limin
  • 2 篇 maji subhransu

语言

  • 227 篇 英文
检索条件"任意字段=27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014"
227 条 记 录,以下是1-10 订阅
排序:
Proceedings of the ieee computer Society conference on computer vision and pattern recognition
Proceedings of the IEEE Computer Society Conference on Compu...
收藏 引用
27th ieee conference on computer vision and pattern recognition, cvpr 2014
the proceedings contain 539 papers. the topics discussed include: fast and accurate image matching with cascade hashing for 3D reconstruction;minimal solvers for relative pose with a single unknown radial distortion;s...
来源: 评论
Probing Attention-Driven Normalizing Flow Network for Low-Light Image Enhancement  27th
Probing Attention-Driven Normalizing Flow Network for Low-L...
收藏 引用
27th International conference on pattern recognition, ICPR 2024
作者: Singh, Siddharth Mehta, Nancy Prakash, K.N. Vipparthi, Santosh Kumar Murala, Subrahmanyam CVPR Lab Indian Institute of Technology Ropar Rupnagar India Vision Lab CAIDAS & IFI University of Wuerzburg Würzburg Germany SR Gudlavalleru Engineering College Vijayawada India CVPR Lab School of Computer Science and Statistics Trinity College Dublin Dublin Ireland
Existing low-light image enhancement approaches based upon pixel-wise reconstruction losses are inadept at capturing the complex distribution of well-exposed images, resulting in residual noise, insufficient... 详细信息
来源: 评论
FastTextSpotter: A High-Efficiency Transformer for Multilingual Scene Text Spotting  27th
FastTextSpotter: A High-Efficiency Transformer for Multilin...
收藏 引用
27th International conference on pattern recognition, ICPR 2024
作者: Das, Alloy Biswas, Sanket Pal, Umapada Lladós, Josep Bhattacharya, Saumik CVPR Unit Indian Statistical Institute Kolkata Kolkata India Computer Vision Center Universitat Autónoma de Barcelona Bellaterra Spain ECE Indian Institute of Technology Kharagpur Kharagpur India
the proliferation of scene text in both structured and unstructured environments presents significant challenges in optical character recognition (OCR), necessitating more efficient and robust text spotting solutions.... 详细信息
来源: 评论
Frequency Modulated Deformable Transformer for Underwater Image Enhancement  27th
Frequency Modulated Deformable Transformer for Underwater I...
收藏 引用
27th International conference on pattern recognition, ICPR 2024
作者: Dukre, Adinath Deshmukh, Vivek Kulkarni, Ashutosh Phutke, Shruti Vipparthi, Santosh Kumar Gonde, Anil B. Murala, Subrahmanyam Shri Guru Gobind Singhji Institute of Engineering and Technology Nanded India CVPR Lab Indian Institute of Technology Ropar Rupnagar India ETI Lab Yamaha Motor Solutions Faridabad India School of Computer Science and Statistics Trinity College Dublin Dublin Ireland
Underwater images frequently experience quality degradation due to refraction, back-scattering, and absorption, leading to color distortion, blurriness, and reduced visibility. Such degradation present in the underwat... 详细信息
来源: 评论
Deformable Multi-Scale Network for Snow Removal in Video  27th
Deformable Multi-Scale Network for Snow Removal in Video
收藏 引用
27th International conference on pattern recognition, ICPR 2024
作者: He, Runlin Zhou, Gang Xue, Tianhao Liu, Zhaoxi Jia, Zhenhong Key Laboratory of Signal Detection and Processing Department of Computer Science and Technology Xinjiang University Urumqi China
Snowfall severely degrades outdoor video visibility while reducing the performance of subsequent vision tasks. Although video recovery methods based on deep learning have achieved amazing accomplishments, video snow r... 详细信息
来源: 评论
Fusing Image and Text Features for Scene Sentiment Analysis Using Whale-Honey Badger Optimization Algorithm (WHBOA)  27th
Fusing Image and Text Features for Scene Sentiment Analysi...
收藏 引用
27th International conference on pattern recognition, ICPR 2024
作者: Yadav, Prem Shanker Tyagi, Dinesh Kumar Vipparthi, Santosh Kumar Department of Computer Science and Engineering Malaviya National Institute of Technology Rajasthan Jaipur302017 India School of Artificial Intelligence and Data Engineering Indian Institute of Technology Ropar Punjab Rupnagar140001 India
Developing a real-time sentiment analysis application that relies solely on features extracted from images or textual content falls short of capturing human emotions’ nuanced and multifaceted nature. the unlabeled da... 详细信息
来源: 评论
Probabilistic Labeling Cost for High-Accuracy Multi-View Reconstruction  27
Probabilistic Labeling Cost for High-Accuracy Multi-View Rec...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Kostrikov, Ilya Horbert, Esther Leibe, Bastian Rhein Westfal TH Aachen Comp Vis Grp Aachen Germany
In this paper, we propose a novel labeling cost for multi-view reconstruction. Existing approaches use data terms with specific weaknesses that are vulnerable to common challenges, such as low-textured regions or spec... 详细信息
来源: 评论
Noising versus Smoothing for Vertex Identification in Unknown Shapes  27
Noising versus Smoothing for Vertex Identification in Unknow...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Raftopoulos, Konstantinos A. Ferecatu, Marin CNAM Ctr Etud & Rech Informat & Commun CEDRIC FR-75141 Paris 03 France
A method for identifying shape features of local nature on the shapes boundary, in a way that is facilitated by the presence of noise is presented. the boundary is seen as a real function. A study of a certain distanc... 详细信息
来源: 评论
A Compositional Model for Low-Dimensional Image Set Representation  27
A Compositional Model for Low-Dimensional Image Set Represen...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Mobahi, Hossein Liu, Ce Freeman, William T. MIT Cambridge MA 02139 USA Microsoft Res Cambridge MA USA
Learning a low-dimensional representation of images is useful for various applications in graphics and computer vision. Existing solutions either require manually specified landmarks for corresponding points in the im... 详细信息
来源: 评论
Transparent Object Reconstruction via Coded Transport of Intensity  27
Transparent Object Reconstruction via Coded Transport of Int...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Ma, Chenguang Lin, Xing Suo, Jinli Dai, Qionghai Wetzstein, Gordon Tsinghua Univ Dept Automat Beijing Peoples R China
Capturing and understanding visual signals is one of the core interests of computer vision. Much progress has been made w.r.t. many aspects of imaging, but the reconstruction of refractive phenomena, such as turbulenc... 详细信息
来源: 评论