咨询与建议

限定检索结果

文献类型

  • 220 篇 会议
  • 5 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 227 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 217 篇 工学
    • 203 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 20 篇 机械工程
    • 4 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 4 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 7 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 44 篇 computer vision
  • 24 篇 pattern recognit...
  • 23 篇 object recogniti...
  • 20 篇 images
  • 15 篇 face recognition
  • 11 篇 object detection
  • 9 篇 action recogniti...
  • 9 篇 training
  • 8 篇 image segmentati...
  • 8 篇 feature extracti...
  • 7 篇 image classifica...
  • 6 篇 cameras
  • 6 篇 gesture recognit...
  • 6 篇 dataset
  • 6 篇 machine learning
  • 6 篇 recognition
  • 5 篇 deep learning
  • 5 篇 visualization
  • 5 篇 image recognitio...
  • 5 篇 shape

机构

  • 6 篇 chinese acad sci...
  • 4 篇 chinese univ hon...
  • 4 篇 mpi intelligent ...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ washington ...
  • 3 篇 univ oxford oxfo...
  • 3 篇 hong kong univ s...
  • 3 篇 mit cambridge ma...
  • 3 篇 univ calif berke...
  • 2 篇 inria
  • 2 篇 stevens inst tec...
  • 2 篇 univ calif river...
  • 2 篇 univ toronto on
  • 2 篇 rensselaer polyt...
  • 2 篇 georgia inst tec...
  • 2 篇 swiss fed inst t...
  • 2 篇 chinese acad sci...
  • 2 篇 chinese acad sci...
  • 2 篇 natl univ singap...
  • 2 篇 swiss fed inst t...

作者

  • 4 篇 hu weiming
  • 3 篇 yuan chunfeng
  • 3 篇 li stan z.
  • 3 篇 lu cewu
  • 3 篇 wen longyin
  • 3 篇 jia jiaya
  • 3 篇 murala subrahman...
  • 3 篇 ji qiang
  • 3 篇 salzmann mathieu
  • 3 篇 shao ling
  • 3 篇 vedaldi andrea
  • 3 篇 yan shuicheng
  • 3 篇 vipparthi santos...
  • 3 篇 brandt jonathan
  • 3 篇 hua gang
  • 2 篇 kannala juho
  • 2 篇 cucchiara rita
  • 2 篇 ling haibin
  • 2 篇 wang limin
  • 2 篇 maji subhransu

语言

  • 227 篇 英文
检索条件"任意字段=27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014"
227 条 记 录,以下是161-170 订阅
排序:
Ground-Based Activity recognition at Distance and Behind Wall
Ground-Based Activity Recognition at Distance and Behind Wal...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Wang, Tao Hammoud, Riad Zhu, Zhigang BAE Syst 6 New England Execut Pk Burlington MA 01803 USA CUNY Dept Comp Sci New York NY 10031 USA
Long-range activity recognition is a challenging research problem in a surveillance area where sensors cannot be placed close to targets. Even a simple activity can be confused with other activities or not be recogniz... 详细信息
来源: 评论
Towards Automated Understanding of Student-Tutor Interactions using Visual Deictic Gestures
Towards Automated Understanding of Student-Tutor Interaction...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Sathyanarayana, Suchitra Satzoda, Ravi Kumar Carini, Amber Lee, Monique Salamanca, Linda Reilly, Judy Forster, Deborah Bartlett, Marian Littlewort, Gwen Univ Calif San Diego La Jolla CA 92093 USA San Diego State Univ San Diego CA 92182 USA
In this paper, we present techniques for automated understanding of tutor-student behavior through detecting visual deictic gestures, in the context of one-to-one mathematics tutoring. To the best knowledge of the aut... 详细信息
来源: 评论
A High-Performance Hardware Architecture for a Frameless Stereo vision Algorithm Implemented on a FPGA Platform
A High-Performance Hardware Architecture for a Frameless Ste...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Eibensteiner, Florian Kogler, Juergen Scharinger, Josef Upper Austria Univ Appl Sci Softwarepk 11 A-4232 Hagenberg Austria Austrian Inst Technol GmbH AIT A-1220 Vienna Austria Johannes Kepler Univ Linz A-4040 Linz Austria
As a novelty, in this paper we present an event-based stereo vision matching approach based on time-correlation using segmentation to restrict the matching process to active image areas, exploiting the event-driven be... 详细信息
来源: 评论
Understanding Objects in Detail with Fine-grained Attributes  27
Understanding Objects in Detail with Fine-grained Attributes
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Vedaldi, Andrea Mahendran, Siddharth Tsogkas, Stavros Maji, Subhransu Girshick, Ross Kannala, Juho Rahtu, Esa Kokkinos, Iasonas Blaschko, Matthew B. Weiss, David Taskar, Ben Simonyan, Karen Saphra, Naomi Mohamed, Sammy Univ Oxford Oxford OX1 2JD England Johns Hopkins Univ Baltimore MD 21218 USA Ecole Cent Paris INRIA Saclay Paris France Toyota Res Inst Chicago Chicago IL USA Univ Calif Berkeley Berkeley CA 94720 USA Univ Oulu SF-90100 Oulu Finland Google Res Mountain View CA USA Univ Washington Seattle WA 98195 USA SUNY Stony Brook Stony Brook NY USA
We study the problem of understanding objects in detail, intended as recognizing a wide array of fine-grained object attributes. To this end, we introduce a dataset of 7,413 air-planes annotated in detail with parts a... 详细信息
来源: 评论
the Sightfield: Visualizing computer vision, and seeing its capacity to "see"
The Sightfield: Visualizing Computer Vision, and seeing its ...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Mann, Steve Univ Toronto Dept Elect & Comp Engn Toronto ON M5S 1A1 Canada
computer vision is embedded in toilets, urinals, handwash faucets (e.g. Delta Faucet's 128 or 1024 pixel linear arrays), doors, lightswitches, thermostats, and many other objects that "watch" us. Camera-... 详细信息
来源: 评论
Automatic Target recognition in Infrared Imagery Using Dense HOG Features and Relevance Grouping of Vocabulary
Automatic Target Recognition in Infrared Imagery Using Dense...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Khan, M. N. A. Fan, Guoliang Heisterkamp, Douglas R. Yu, Liangjiang Oklahoma State Univ Dept Comp Sci Stillwater OK 74078 USA Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA
We study automatic target recognition (ATR) in infrared (IR) imagery by applying two recent computer vision techniques, Histogram of Oriented Gradients (HOG) and Bag-of-Words (BoW). We propose the idea of dense HOG fe... 详细信息
来源: 评论
Video-based Object recognition using Novel Set-of-Sets Representations
Video-based Object Recognition using Novel Set-of-Sets Repre...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Liu, Yang Jang, Youngkyoon Woo, Woontack Kim, Tae-Kyun Imperial Coll London London England Korea Adv Inst Sci & Technol Daejeon South Korea
We address the problem of object recognition in egocentric videos, where a user arbitrarily moves a mobile camera around an unknown object. Using a video that captures variation in an object's appearance owing to ... 详细信息
来源: 评论
Active Planning, Sensing and recognition Using a Resource-Constrained Discriminant POMDP
Active Planning, Sensing and Recognition Using a Resource-Co...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Wang, Zhaowen Wang, Zhangyang Moll, Mark Huang, Po-Sen Grady, Devin Nasrabadi, Nasser Huang, thomas Kavraki, Lydia Hasegawa-Johnson, Mark Univ Illinois Beckman Inst Urbana IL 61801 USA Rice Univ Dept Comp Sci Houston TX 77005 USA US Army Res Lab Adelphi MD 20783 USA
In this paper, we address the problem of object class recognition via observations from actively selected views/modalities/features under limited resource budgets. A Partially Observable Markov Decision Process (POMDP... 详细信息
来源: 评论
End-to-End Instance Segmentation with Recurrent Attention  30
End-to-End Instance Segmentation with Recurrent Attention
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ren, Mengye Zemel, Richard S. Univ Toronto Toronto ON Canada Canadian Inst Adv Res Toronto ON Canada
While convolutional neural networks have gained impressive success recently in solving structured prediction problems such as semantic segmentation, it remains a challenge to differentiate individual object instances ... 详细信息
来源: 评论
CNN Features off-the-shelf: an Astounding Baseline for recognition
CNN Features off-the-shelf: an Astounding Baseline for Recog...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Razavian, Ali Sharif Azizpour, Hossein Sullivan, Josephine Carlsson, Stefan KTH Royal Inst Technol CVAP Stockholm Sweden
Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful. this paper adds to the mounting evidence that this is indeed the case. We report on a series of ... 详细信息
来源: 评论