咨询与建议

限定检索结果

文献类型

  • 220 篇 会议
  • 5 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 227 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 217 篇 工学
    • 203 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 20 篇 机械工程
    • 4 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 4 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 7 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 44 篇 computer vision
  • 24 篇 pattern recognit...
  • 23 篇 object recogniti...
  • 20 篇 images
  • 15 篇 face recognition
  • 11 篇 object detection
  • 9 篇 action recogniti...
  • 9 篇 training
  • 8 篇 image segmentati...
  • 8 篇 feature extracti...
  • 7 篇 image classifica...
  • 6 篇 cameras
  • 6 篇 gesture recognit...
  • 6 篇 dataset
  • 6 篇 machine learning
  • 6 篇 recognition
  • 5 篇 deep learning
  • 5 篇 visualization
  • 5 篇 image recognitio...
  • 5 篇 shape

机构

  • 6 篇 chinese acad sci...
  • 4 篇 chinese univ hon...
  • 4 篇 mpi intelligent ...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ washington ...
  • 3 篇 univ oxford oxfo...
  • 3 篇 hong kong univ s...
  • 3 篇 mit cambridge ma...
  • 3 篇 univ calif berke...
  • 2 篇 inria
  • 2 篇 stevens inst tec...
  • 2 篇 univ calif river...
  • 2 篇 univ toronto on
  • 2 篇 rensselaer polyt...
  • 2 篇 georgia inst tec...
  • 2 篇 swiss fed inst t...
  • 2 篇 chinese acad sci...
  • 2 篇 chinese acad sci...
  • 2 篇 natl univ singap...
  • 2 篇 swiss fed inst t...

作者

  • 4 篇 hu weiming
  • 3 篇 yuan chunfeng
  • 3 篇 li stan z.
  • 3 篇 lu cewu
  • 3 篇 wen longyin
  • 3 篇 jia jiaya
  • 3 篇 murala subrahman...
  • 3 篇 ji qiang
  • 3 篇 salzmann mathieu
  • 3 篇 shao ling
  • 3 篇 vedaldi andrea
  • 3 篇 yan shuicheng
  • 3 篇 vipparthi santos...
  • 3 篇 brandt jonathan
  • 3 篇 hua gang
  • 2 篇 kannala juho
  • 2 篇 cucchiara rita
  • 2 篇 ling haibin
  • 2 篇 wang limin
  • 2 篇 maji subhransu

语言

  • 227 篇 英文
检索条件"任意字段=27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014"
227 条 记 录,以下是171-180 订阅
排序:
Exploiting Traffic Scene Disparity Statistics for Stereo vision
Exploiting Traffic Scene Disparity Statistics for Stereo Vis...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Gehrig, Stefan K. Franke, Uwe Schneider, Nicolai Daimler AG HPC 050-G024 D-71059 Sindelfingen Germany IT Designers GmbH D-73070 Esslingen Germany
Advanced Driver Assistance Systems benefit from a full 3D reconstruction of the environment in real-time, often obtained via stereo vision. Semi-Global Matching (SGM) is a popular stereo algorithm for solving this tas... 详细信息
来源: 评论
Globality-Locality Preserving Projections for Biometric Data Dimensionality Reduction
Globality-Locality Preserving Projections for Biometric Data...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Huang, Sheng Elgammal, Ahmed Huangfu, Luwen Yang, Dan Zhang, Xiaohong Chongqing Univ Chongqing Peoples R China HTC Beijing Adv Technol Res Ctr Beijing Peoples R China Rutgers State Univ Piscataway NJ 08855 USA
In a biometric recognition task, the manifold of data is the result of the interactions between the sub-manifold of dynamic factors of subjects and the sub-manifold of static factors of subjects. therefore, instead of... 详细信息
来源: 评论
A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks
A 240 G-ops/s Mobile Coprocessor for Deep Neural Networks
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Gokhale, Vinayak Jin, Jonghoon Dundar, Aysegul Martini, Berin Culurciello, Eugenio Purdue Univ W Lafayette IN 47907 USA Purdue Univ Weldon Sch Biomed Engn W Lafayette IN 47907 USA
Deep networks are state-of-the-art models used for understanding the content of images, videos, audio and raw input data. Current computing systems are not able to run deep network models in real-time with low power c... 详细信息
来源: 评论
A Novel HDR Depth Camera for Real-time 3D 360° Panoramic vision
A Novel HDR Depth Camera for Real-time 3D 360° Panoramic Vi...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Belbachir, Ahmed Nabil Schraml, Stephan Mayerhofer, Manfred Hofstaetter, Michael AIT Austrian Inst Technol New Sensor Technol Business Unit Safety & Secur Dept A-1220 Vienna Austria
this paper presents a novel 360 degrees High-Dynamic Range (HDR) camera for real-time 3D 360 degrees panoramic computer vision. the camera consists of (1) a pair of bio-inspired dynamic vision line sensors (1024 pixel... 详细信息
来源: 评论
Multiple Target Tracking Based on Undirected Hierarchical Relation Hypergraph  27
Multiple Target Tracking Based on Undirected Hierarchical Re...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Wen, Longyin Li, Wenbo Yan, Junjie Lei, Zhen Yi, Dong Li, Stan Z. Chinese Acad Sci Ctr Biometr & Secur Res Beijing 100864 Peoples R China Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing 100864 Peoples R China
Multi-target tracking is an interesting but challenging task in computer vision field. Most previous data association based methods merely consider the relationships (e.g. appearance and motion pattern similarities) b... 详细信息
来源: 评论
Multi-Source Multi-Modal Activity recognition in Aerial Video Surveillance
Multi-Source Multi-Modal Activity Recognition in Aerial Vide...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Hammoud, Riad I. Sahin, Cem S. Blasch, Erik P. Rhodes, Bradley J. BAE Syst Burlington MA 01803 USA Air Force Res Lab Rome NY USA
Recognizing activities in wide aerial/overhead imagery remains a challenging problem due in part to low-resolution video and cluttered scenes with a large number of moving objects. In the context of this research, we ... 详细信息
来源: 评论
Coarse-to-Fine Segmentation With Shape-Tailored Continuum Scale Spaces  30
Coarse-to-Fine Segmentation With Shape-Tailored Continuum Sc...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Khan, Naeemullah Hong, Byung-Woo Yezzi, Anthony Sundaramoorthi, Ganesh KAUST Thuwal Saudi Arabia Chung Ang Univ Seoul South Korea Georgia Tech Atlanta GA USA
We formulate an energy for segmentation that is designed to have preference for segmenting the coarse over fine structure of the image, without smoothing across boundaries of regions. the energy is formulated by integ... 详细信息
来源: 评论
Driver Cell Phone Usage Detection From HOV/HOT NIR Images
Driver Cell Phone Usage Detection From HOV/HOT NIR Images
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Artan, Yusuf Bulan, Orhan Loce, Robert P. Paul, Peter Xerox Res Ctr Webster Webster NY 14580 USA
Distracted driving due to cell phone usage is an increasingly costly problem in terms of lost lives and damaged property. Motivated by its impact on public safety and property, several state and federal governments ha... 详细信息
来源: 评论
Expanded Parts Model for Human Attribute and Action recognition in Still Images
Expanded Parts Model for Human Attribute and Action Recognit...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Sharma, Gaurav Jurie, Frederic Schmid, Cordelia Univ Caen Basse Normandie CNRS GREYC UMR 6072 Caen France INRIA LEAR Grenoble France
We propose a new model for recognizing human attributes (e.g. wearing a suit, sitting, short hair) and actions (e.g. running, riding a horse) in still images. the proposed model relies on a collection of part template... 详细信息
来源: 评论
Detecting Social Groups in Crowded Surveillance Videos Using Visual Attention
Detecting Social Groups in Crowded Surveillance Videos Using...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Leach, Michael. J. V. Baxter, Rolf. Robertson, Neil. M. Sparks, Ed. P. Roke Manor Res Romsey Hants England Heriot Watt Univ Sch Engn & Phys Sci Edinburgh Midlothian Scotland
In this paper we demonstrate that the current state of the art social grouping methodology can be enhanced with the use of visual attention estimation. In a surveillance environment it is possible to extract the gazin... 详细信息
来源: 评论