咨询与建议

限定检索结果

文献类型

  • 220 篇 会议
  • 5 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 227 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 217 篇 工学
    • 203 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 20 篇 机械工程
    • 4 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 4 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 7 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 44 篇 computer vision
  • 24 篇 pattern recognit...
  • 23 篇 object recogniti...
  • 20 篇 images
  • 15 篇 face recognition
  • 11 篇 object detection
  • 9 篇 action recogniti...
  • 9 篇 training
  • 8 篇 image segmentati...
  • 8 篇 feature extracti...
  • 7 篇 image classifica...
  • 6 篇 cameras
  • 6 篇 gesture recognit...
  • 6 篇 dataset
  • 6 篇 machine learning
  • 6 篇 recognition
  • 5 篇 deep learning
  • 5 篇 visualization
  • 5 篇 image recognitio...
  • 5 篇 shape

机构

  • 6 篇 chinese acad sci...
  • 4 篇 chinese univ hon...
  • 4 篇 mpi intelligent ...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ washington ...
  • 3 篇 univ oxford oxfo...
  • 3 篇 hong kong univ s...
  • 3 篇 mit cambridge ma...
  • 3 篇 univ calif berke...
  • 2 篇 inria
  • 2 篇 stevens inst tec...
  • 2 篇 univ calif river...
  • 2 篇 univ toronto on
  • 2 篇 rensselaer polyt...
  • 2 篇 georgia inst tec...
  • 2 篇 swiss fed inst t...
  • 2 篇 chinese acad sci...
  • 2 篇 chinese acad sci...
  • 2 篇 natl univ singap...
  • 2 篇 swiss fed inst t...

作者

  • 4 篇 hu weiming
  • 3 篇 yuan chunfeng
  • 3 篇 li stan z.
  • 3 篇 lu cewu
  • 3 篇 wen longyin
  • 3 篇 jia jiaya
  • 3 篇 murala subrahman...
  • 3 篇 ji qiang
  • 3 篇 salzmann mathieu
  • 3 篇 shao ling
  • 3 篇 vedaldi andrea
  • 3 篇 yan shuicheng
  • 3 篇 vipparthi santos...
  • 3 篇 brandt jonathan
  • 3 篇 hua gang
  • 2 篇 kannala juho
  • 2 篇 cucchiara rita
  • 2 篇 ling haibin
  • 2 篇 wang limin
  • 2 篇 maji subhransu

语言

  • 227 篇 英文
检索条件"任意字段=27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014"
227 条 记 录,以下是181-190 订阅
排序:
Deep Roots: Improving CNN Efficiency with Hierarchical Filter Groups  30
Deep Roots: Improving CNN Efficiency with Hierarchical Filte...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ioannou, Yani Robertson, Duncan Cipolla, Roberto Criminisi, Antonio Univ Cambridge Cambridge England Microsoft Res Washington DC USA
We propose a new method for creating computationally efficient and compact convolutional neural networks (CNNs) using a novel sparse connection structure that resembles a tree root. this allows a significant reduction... 详细信息
来源: 评论
Self-supervised learning of visual features through embedding images into text topic spaces  30
Self-supervised learning of visual features through embeddin...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gomez, Lluis Patel, Yash Rusinol, Marcal Karatzas, Dimosthenis Jawahar, C. V. UAB Comp Vis Ctr Barcelona Spain IIIT Hyderabad KCIS CVIT Hyderabad Andhra Prades India
End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to... 详细信息
来源: 评论
Generalized Autoencoder: A Neural Network Framework for Dimensionality Reduction
Generalized Autoencoder: A Neural Network Framework for Dime...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Wang, Wei Huang, Yan Wang, Yizhou Wang, Liang Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit CRIPAC Beijing Peoples R China Peking Univ Sch EECS Natl Eng Lab Video Technol Key Lab Machine Percep Beijing Peoples R China
the autoencoder algorithm and its deep version as traditional dimensionality reduction methods have achieved great success via the powerful representability of neural networks. However, they just use each instance to ... 详细信息
来源: 评论
Perceptual Organization and recognition of Indoor Scenes from RGB-D Images
Perceptual Organization and Recognition of Indoor Scenes fro...
收藏 引用
26th ieee conference on computer vision and pattern recognition (cvpr)
作者: Gupta, Saurabh Arbelaez, Pablo Malik, Jitendra Univ Calif Berkeley Berkeley CA 94720 USA
We address the problems of contour detection, bottom-up grouping and semantic segmentation using RGB-D data. We focus on the challenging setting of cluttered indoor scenes, and evaluate our approach on the recently in... 详细信息
来源: 评论
Superpixel-based Tracking-by-Segmentation using Markov Chains  30
Superpixel-based Tracking-by-Segmentation using Markov Chain...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yeo, Donghun Son, Jeany Han, Bohyung Han, Joon Hee POSTECH Dept Comp Sci & Engn Pohang South Korea
We propose a simple but effective tracking-by-segmentation algorithm using Absorbing Markov Chain (AMC) on superpixel segmentation, where target state is estimated by a combination of bottom-up and top-down approaches... 详细信息
来源: 评论
Landmark Based Facial Component Reconstruction for recognition Across Pose
Landmark Based Facial Component Reconstruction for Recogniti...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Hsu, Gee-Sern Peng, Hsiao-Chia Chang, Kai-Hsiang Natl Taiwan Univ Sci & Technol Dept Mech Engn Taipei Taiwan
Different from previous 3D face modeling approaches that consider the whole facial area, the proposed method reconstructs 3D facial components for handling cross-pose recognition. It has two phases, component reconstr... 详细信息
来源: 评论
SphereFace: Deep Hypersphere Embedding for Face recognition  30
SphereFace: Deep Hypersphere Embedding for Face Recognition
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Weiyang Wen, Yandong Yu, Zhiding Li, Ming Raj, Bhiksha Song, Le Georgia Inst Technol Atlanta GA 30332 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA Sun Yat Sen Univ Guangzhou Guangdong Peoples R China
this paper addresses deep face recognition (FR) problem under open-set protocol, where ideal face features are expected to have smaller maximal intra-class distance than minimal inter-class distance under a suitably c... 详细信息
来源: 评论
Procedural Generation of Videos to Train Deep Action recognition Networks  30
Procedural Generation of Videos to Train Deep Action Recogni...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Roberto de Souza, Cesar Gaidon, Adrien Cabon, Yohann Manuel Lopez, Antonio Xerox Res Ctr Europe Comp Vis Grp Meylan France Toyota Res Inst Los Altos CA USA Univ Autonoma Barcelona Ctr Vis Comp Bellaterra Spain
Deep learning for human action recognition in videos is making significant progress, but is slowed down by its dependency on expensive manual labeling of large video collections. In this work, we investigate the gener... 详细信息
来源: 评论
Convex Global 3D Registration with Lagrangian Duality  30
Convex Global 3D Registration with Lagrangian Duality
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Briales, Jesus Gonzalez-Jimenez, Javier Univ Malaga MAPIR UMA Grp Malaga Spain
the registration of 3D models by a Euclidean transformation is a fundamental task at the core of many application in computer vision. this problem is non- convex due to the presence of rotational constraints, making t... 详细信息
来源: 评论
Key Point-Based Driver Activity recognition
Key Point-Based Driver Activity Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Vats, Arpita Anastasiu, David C. Santa Clara Univ Santa Clara CA 95053 USA
We present a key point-based activity recognition framework, built upon pre-trained human pose estimation and facial feature detection models. Our method extracts complex static and movement-based features from key fr... 详细信息
来源: 评论