咨询与建议

限定检索结果

文献类型

  • 220 篇 会议
  • 5 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 227 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 217 篇 工学
    • 203 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 20 篇 机械工程
    • 4 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 4 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 7 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 44 篇 computer vision
  • 24 篇 pattern recognit...
  • 23 篇 object recogniti...
  • 20 篇 images
  • 15 篇 face recognition
  • 11 篇 object detection
  • 9 篇 action recogniti...
  • 9 篇 training
  • 8 篇 image segmentati...
  • 8 篇 feature extracti...
  • 7 篇 image classifica...
  • 6 篇 cameras
  • 6 篇 gesture recognit...
  • 6 篇 dataset
  • 6 篇 machine learning
  • 6 篇 recognition
  • 5 篇 deep learning
  • 5 篇 visualization
  • 5 篇 image recognitio...
  • 5 篇 shape

机构

  • 6 篇 chinese acad sci...
  • 4 篇 chinese univ hon...
  • 4 篇 mpi intelligent ...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ washington ...
  • 3 篇 univ oxford oxfo...
  • 3 篇 hong kong univ s...
  • 3 篇 mit cambridge ma...
  • 3 篇 univ calif berke...
  • 2 篇 inria
  • 2 篇 stevens inst tec...
  • 2 篇 univ calif river...
  • 2 篇 univ toronto on
  • 2 篇 rensselaer polyt...
  • 2 篇 georgia inst tec...
  • 2 篇 swiss fed inst t...
  • 2 篇 chinese acad sci...
  • 2 篇 chinese acad sci...
  • 2 篇 natl univ singap...
  • 2 篇 swiss fed inst t...

作者

  • 4 篇 hu weiming
  • 3 篇 yuan chunfeng
  • 3 篇 li stan z.
  • 3 篇 lu cewu
  • 3 篇 wen longyin
  • 3 篇 jia jiaya
  • 3 篇 murala subrahman...
  • 3 篇 ji qiang
  • 3 篇 salzmann mathieu
  • 3 篇 shao ling
  • 3 篇 vedaldi andrea
  • 3 篇 yan shuicheng
  • 3 篇 vipparthi santos...
  • 3 篇 brandt jonathan
  • 3 篇 hua gang
  • 2 篇 kannala juho
  • 2 篇 cucchiara rita
  • 2 篇 ling haibin
  • 2 篇 wang limin
  • 2 篇 maji subhransu

语言

  • 227 篇 英文
检索条件"任意字段=27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014"
227 条 记 录,以下是11-20 订阅
排序:
Hierarchical Feature Hashing for Fast Dimensionality Reduction  27
Hierarchical Feature Hashing for Fast Dimensionality Reducti...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Bin Xing, Eric P. Carnegie Mellon Univ Sch Comp Sci Pittsburgh PA 15213 USA
Curse of dimensionality is a practical and challenging problem in image categorization, especially in cases with a large number of classes. Multi-class classification encounters severe computational and storage proble... 详细信息
来源: 评论
Range-Sample Depth Feature for Action recognition  27
Range-Sample Depth Feature for Action Recognition
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Lu, Cewu Jia, Jiaya Tang, Chi-Keung Hong Kong Univ Sci & Technol Hong Kong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
We propose binary range-sample feature in depth. It is based on t tests and achieves reasonable invariance with respect to possible change in scale, viewpoint, and background. It is robust to occlusion and data corrup... 详细信息
来源: 评论
Histograms of pattern Sets for Image Classification and Object recognition  27
Histograms of Pattern Sets for Image Classification and Obje...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Voravuthikunchai, Winn Cremilleux, Bruno Jurie, Frederic Univ Caen Basse Normandie CNRS UMR 6072 ENSICAEN Caen France
this paper introduces a novel image representation capturing feature dependencies through the mining of meaningful combinations of visual features. this representation leads to a compact and discriminative encoding of... 详细信息
来源: 评论
Anytime recognition of Objects and Scenes  27
Anytime Recognition of Objects and Scenes
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Karayev, Sergey Fritz, Mario Darrell, Trevor Univ Calif Berkeley Berkeley CA 94720 USA Max Planck Inst Informat Saarbrucken Germany
Humans are capable of perceiving a scene at a glance, and obtain deeper understanding with additional time. Similarly, visual recognition deployments should be robust to varying computational budgets. Such situations ... 详细信息
来源: 评论
Analysis by Synthesis: 3D Object recognition by Object Reconstruction  27
Analysis by Synthesis: 3D Object Recognition by Object Recon...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Hejrati, Mohsen Ramanan, Deva Univ Calif Irvine Irvine CA 92717 USA
We introduce a new approach for recognizing and reconstructing 3D objects in images. Our approach is based on an analysis by synthesis strategy. A forward synthesis model constructs possible geometric interpretations ... 详细信息
来源: 评论
A Hierarchical Probabilistic Model for Facial Feature Detection  27
A Hierarchical Probabilistic Model for Facial Feature Detect...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Wu, Yue Wang, Ziheng Ji, Qiang Rensselaer Polytech Inst ECSE Dept Troy NY 12181 USA
Facial feature detection from facial images has attracted great attention in the field of computer vision. It is a non-trivial task since the appearance and shape of the face tend to change under different conditions.... 详细信息
来源: 评论
Illumination-Aware Age Progression  27
Illumination-Aware Age Progression
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Kemelmacher-Shlizerman, Ira Suwajanakorn, Supasorn Seitz, Steven M. Univ Washington Seattle WA 98195 USA
We present an approach that takes a single photograph of a child as input and automatically produces a series of age-progressed outputs between 1 and 80 years of age, accounting for pose, expression, and illumination.... 详细信息
来源: 评论
Seeing What You're Told: Sentence-Guided Activity recognition In Video  27
Seeing What You're Told: Sentence-Guided Activity Recognitio...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Siddharth, N. Barbu, Andrei Siskind, Jeffrey Mark Stanford Univ Stanford CA 94305 USA MIT Cambridge MA 02139 USA Purdue Univ W Lafayette IN 47907 USA
We present a system that demonstrates how the compositional structure of events, in concert with the compositional structure of language, can interplay with the underlying focusing mechanisms in video action recogniti... 详细信息
来源: 评论
Shadow Removal from Single RGB-D Images  27
Shadow Removal from Single RGB-D Images
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Xiao, Yao Tsougenis, Efstratios Tang, Chi-Keung Hong Kong Univ Sci & Technol Hong Kong Hong Kong Peoples R China
We present the first automatic method to remove shadows from single RGB-D images. Using normal cues directly derived from depth, we can remove hard and soft shadows while preserving surface texture and shading. Our ke... 详细信息
来源: 评论
Partial Symmetry in Polynomial Systems and its Applications in computer vision  27
Partial Symmetry in Polynomial Systems and its Applications ...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Kuang, Yubin Zheng, Yinqiang Astrom, Kalle Lund Univ Ctr Math Sci S-22100 Lund Sweden Natl Inst Informat Tokyo Japan
Algorithms for solving systems of polynomial equations are key components for solving geometry problems in computer vision. Fast and stable polynomial solvers are essential for numerous applications e.g. minimal probl... 详细信息
来源: 评论