咨询与建议

限定检索结果

文献类型

  • 220 篇 会议
  • 5 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 227 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 217 篇 工学
    • 203 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 20 篇 机械工程
    • 4 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 4 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 7 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 44 篇 computer vision
  • 24 篇 pattern recognit...
  • 23 篇 object recogniti...
  • 20 篇 images
  • 15 篇 face recognition
  • 11 篇 object detection
  • 9 篇 action recogniti...
  • 9 篇 training
  • 8 篇 image segmentati...
  • 8 篇 feature extracti...
  • 7 篇 image classifica...
  • 6 篇 cameras
  • 6 篇 gesture recognit...
  • 6 篇 dataset
  • 6 篇 machine learning
  • 6 篇 recognition
  • 5 篇 deep learning
  • 5 篇 visualization
  • 5 篇 image recognitio...
  • 5 篇 shape

机构

  • 6 篇 chinese acad sci...
  • 4 篇 chinese univ hon...
  • 4 篇 mpi intelligent ...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ washington ...
  • 3 篇 univ oxford oxfo...
  • 3 篇 hong kong univ s...
  • 3 篇 mit cambridge ma...
  • 3 篇 univ calif berke...
  • 2 篇 inria
  • 2 篇 stevens inst tec...
  • 2 篇 univ calif river...
  • 2 篇 univ toronto on
  • 2 篇 rensselaer polyt...
  • 2 篇 georgia inst tec...
  • 2 篇 swiss fed inst t...
  • 2 篇 chinese acad sci...
  • 2 篇 chinese acad sci...
  • 2 篇 natl univ singap...
  • 2 篇 swiss fed inst t...

作者

  • 4 篇 hu weiming
  • 3 篇 yuan chunfeng
  • 3 篇 li stan z.
  • 3 篇 lu cewu
  • 3 篇 wen longyin
  • 3 篇 jia jiaya
  • 3 篇 murala subrahman...
  • 3 篇 ji qiang
  • 3 篇 salzmann mathieu
  • 3 篇 shao ling
  • 3 篇 vedaldi andrea
  • 3 篇 yan shuicheng
  • 3 篇 vipparthi santos...
  • 3 篇 brandt jonathan
  • 3 篇 hua gang
  • 2 篇 kannala juho
  • 2 篇 cucchiara rita
  • 2 篇 ling haibin
  • 2 篇 wang limin
  • 2 篇 maji subhransu

语言

  • 227 篇 英文
检索条件"任意字段=27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014"
227 条 记 录,以下是201-210 订阅
排序:
the 6th AI City Challenge
The 6th AI City Challenge
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Naphade, Milind Wang, Shuo Anastasiu, David C. Tang, Zheng Chang, Ming-Ching Yao, Yue Zheng, Liang Rahman, Mohammed Shaiqur Venkatachalapathy, Archana Sharma, Anuj Feng, Qi Ablavsky, Vitaly Sclaroff, Stan Chakraborty, Pranamesh Li, Alice Li, Shangru Chellappa, Rama NVIDIA Corp Santa Clara CA 95051 USA Santa Clara Univ Santa Clara CA 95053 USA SUNY Albany Albany NY 12222 USA Australian Natl Univ Canberra ACT Australia Indian Inst Technol Kanpur Kanpur Uttar Pradesh India Iowa State Univ Ames IA USA Boston Univ Boston MA 02215 USA Univ Washington Seattle WA 98195 USA Johns Hopkins Univ Baltimore MD 21218 USA
the 6th edition of the AI City Challenge specifically focuses on problems in two domains where there is tremendous unlocked potential at the intersection of computer vision and artificial intelligence: Intelligent Tra... 详细信息
来源: 评论
A Comparison of Linearisation and the Unscented Transform for computer vision Applications
A Comparison of Linearisation and the Unscented Transform fo...
收藏 引用
27th Annual Symposium of the pattern-recognition-Association-of-South-Africa / 9th Robotics and Mechatronics conference of South Africa (Robmech)
作者: Chiu, Alexander Jones, thomas van Daalen, Corne E. Stellenbosch Univ Dept Elect & Elect Engn Stellenbosch South Africa
Accurate sensor noise propagation is critical for many computer vision and robotic applications. Several probabilistic computer vision techniques require estimates of sensor noise after it has been propagated through ... 详细信息
来源: 评论
An overview of robot vision
An overview of robot vision
收藏 引用
27th Southern African Universities Power Engineering conference (SAUPEC) / 11th Robotics and Mechatronics conference of South Africa (RobMech) / 29th Annual Symposium of pattern-recognition-Association-of-South-Africa (PRASA)
作者: van Eden, Beatrice Rosman, Benjamin CSIR Mobile Intelligent Autonomous Syst Pretoria South Africa Univ Witwatersrand Sch Comp Sci & Appl Math Johannesburg South Africa
Robot vision is an interdisciplinary field that deals with how robots can be made to gain high-level understanding from digital images or videos. Understanding an image at the pixel level often does not provide enough... 详细信息
来源: 评论
Pupil detection for head-mounted eye tracking in the wild: an evaluation of the state of the art
收藏 引用
MACHINE vision AND APPLICATIONS 2016年 第8期27卷 1275-1288页
作者: Fuhl, Wolfgang Tonsen, Marc Bulling, Andreas Kasneci, Enkelejda Univ Tubingen Percept Engn Grp Tubingen Germany Max Planck Inst Informat Perceptual User Interfaces Grp Saarbrucken Germany
Robust and accurate detection of the pupil position is a key building block for head-mounted eye tracking and prerequisite for applications on top, such as gaze-based human-computer interaction or attention analysis. ... 详细信息
来源: 评论
Design of Intelligent Database Program for an Interactive Auto-Responsive SMS-based Opinion Poll System using Triggers and Stored Procedure  27
Design of Intelligent Database Program for an Interactive Au...
收藏 引用
ieee 27th Canadian conference on Electrical and computer Engineering (CCECE)
作者: Adetiloye, Kehinde O. IEEE LaSalle CA USA
Short Message Service (SMS) has remained an integral part of the mobile phone technology, in spite of the huge evolution experienced in the technology since the last two decades, due to its wide acceptance by mobile c... 详细信息
来源: 评论
A novel eyelash detection method for iris recognition
A novel eyelash detection method for iris recognition
收藏 引用
2005 27th Annual International conference of the Engineering in Medicine and Biology Society, ieee-EMBS 2005
作者: Yuan, Weiqi He, Wei Computer Vision Group of Information Institute Shenyang University of Technology Shenyang 110023 China
Iris is often affected by the eyelash noise, when captured under unfavorable condition. Not only the iris localization of inner and outer boundaries, but also iris feature extraction can be affected by eyelash. theref... 详细信息
来源: 评论
Plant recognition System based on Deep Features and Color-LBP method  27
Plant Recognition System based on Deep Features and Color-LB...
收藏 引用
27th Signal Processing and Communications Applications conference (SIU)
作者: Turkoglu, Muammer Hanbay, Davut Bingol Univ Bilgisayar Muhendisligi Muhendislik Mirmarlik Fak Bingol Turkey Inonu Univ Muhendislik Fak Bilgisayar Muhendisligi Malatya Turkey
In recent years, deep learning, which is widely used in machine learning and computer vision, offers many new solutions, especially for agricultural problems. In this study, an approach based on the combination of Con... 详细信息
来源: 评论
FgGAN: A Cascaded Unpaired Learning for Background Estimation and Foreground Segmentation  19
FgGAN: A Cascaded Unpaired Learning for Background Estimatio...
收藏 引用
19th ieee Winter conference on Applications of computer vision (WACV)
作者: Patil, Prashant W. Murala, Subrahmanyam Indian Inst Technol Ropar Comp Vis & Pattern Recognit Lab Rupnagar India
the moving object segmentation (MOS) in videos with bad weather, irregular motion of objects, camera jitter, shadow and dynamic background scenarios is still an open problem for computer vision applications. To addres... 详细信息
来源: 评论
MULTI-CLASS WEAthER CLASSIFICATION FROM STILL IMAGE USING SAID ENSEMBLE MEthOD
MULTI-CLASS WEATHER CLASSIFICATION FROM STILL IMAGE USING SA...
收藏 引用
27th Southern African Universities Power Engineering conference (SAUPEC) / 11th Robotics and Mechatronics conference of South Africa (RobMech) / 29th Annual Symposium of pattern-recognition-Association-of-South-Africa (PRASA)
作者: Ajayi, Gbeminiyi Oluwafemi Wang Zenghui Univ South Africa Elect & Min Dept Johannesburg South Africa
In the field of computer vision, multi-class outdoor weather classification is a difficult task to perform due to diversity and lack of distinct weather characteristic or features. this research proposed a novel frame... 详细信息
来源: 评论
Uncertain LDA: Including Observation Uncertainties in Discriminative Transforms
收藏 引用
ieee TRANSACTIONS ON pattern ANALYSIS AND MACHINE INTELLIGENCE 2016年 第7期38卷 1479-88页
作者: Saeidi, Rahim Astudillo, Ramon Fernandez Kolossa, Dorothea Aalto Univ Dept Signal Proc & Acoust Espoo Uusimaa Finland INESC ID Spoken Language Syst Lab Lisbon Portugal Ruhr Univ Bochum Inst Commun Acoust Univ Str 150 Bochum Nrw Germany
Linear discriminant analysis (LDA) is a powerful technique in pattern recognition to reduce the dimensionality of data vectors. It maximizes discriminability by retaining only those directions that minimize the ratio ... 详细信息
来源: 评论