咨询与建议

限定检索结果

文献类型

  • 220 篇 会议
  • 5 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 227 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 217 篇 工学
    • 203 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 20 篇 机械工程
    • 4 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 4 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 冶金工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 7 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 大气科学
    • 1 篇 海洋科学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 44 篇 computer vision
  • 24 篇 pattern recognit...
  • 23 篇 object recogniti...
  • 20 篇 images
  • 15 篇 face recognition
  • 11 篇 object detection
  • 9 篇 action recogniti...
  • 9 篇 training
  • 8 篇 image segmentati...
  • 8 篇 feature extracti...
  • 7 篇 image classifica...
  • 6 篇 cameras
  • 6 篇 gesture recognit...
  • 6 篇 dataset
  • 6 篇 machine learning
  • 6 篇 recognition
  • 5 篇 deep learning
  • 5 篇 visualization
  • 5 篇 image recognitio...
  • 5 篇 shape

机构

  • 6 篇 chinese acad sci...
  • 4 篇 chinese univ hon...
  • 4 篇 mpi intelligent ...
  • 4 篇 carnegie mellon ...
  • 4 篇 univ washington ...
  • 3 篇 univ oxford oxfo...
  • 3 篇 hong kong univ s...
  • 3 篇 mit cambridge ma...
  • 3 篇 univ calif berke...
  • 2 篇 inria
  • 2 篇 stevens inst tec...
  • 2 篇 univ calif river...
  • 2 篇 univ toronto on
  • 2 篇 rensselaer polyt...
  • 2 篇 georgia inst tec...
  • 2 篇 swiss fed inst t...
  • 2 篇 chinese acad sci...
  • 2 篇 chinese acad sci...
  • 2 篇 natl univ singap...
  • 2 篇 swiss fed inst t...

作者

  • 4 篇 hu weiming
  • 3 篇 yuan chunfeng
  • 3 篇 li stan z.
  • 3 篇 lu cewu
  • 3 篇 wen longyin
  • 3 篇 jia jiaya
  • 3 篇 murala subrahman...
  • 3 篇 ji qiang
  • 3 篇 salzmann mathieu
  • 3 篇 shao ling
  • 3 篇 vedaldi andrea
  • 3 篇 yan shuicheng
  • 3 篇 vipparthi santos...
  • 3 篇 brandt jonathan
  • 3 篇 hua gang
  • 2 篇 kannala juho
  • 2 篇 cucchiara rita
  • 2 篇 ling haibin
  • 2 篇 wang limin
  • 2 篇 maji subhransu

语言

  • 227 篇 英文
检索条件"任意字段=27th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014"
227 条 记 录,以下是21-30 订阅
Convex Global 3D Registration with Lagrangian Duality  30
Convex Global 3D Registration with Lagrangian Duality
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Briales, Jesus Gonzalez-Jimenez, Javier Univ Malaga MAPIR UMA Grp Malaga Spain
the registration of 3D models by a Euclidean transformation is a fundamental task at the core of many application in computer vision. this problem is non- convex due to the presence of rotational constraints, making t... 详细信息
来源: 评论
Spatio-Temporal Self-Organizing Map Deep Network for Dynamic Object Detection from Videos  30
Spatio-Temporal Self-Organizing Map Deep Network for Dynamic...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Du, Yang Yuan, Chunfeng Li, Bing Hu, Weiming Maybank, Stephen Univ Chinese Acad Sci Chinese Acad Sci CAS Ctr Excellence Brain Sci & Intelligence Tech Natl Lab Pattern RecognitInst Automat Beijing Peoples R China Birkbeck Coll London England
In dynamic object detection, it is challenging to construct an effective model to sufficiently characterize the spatial-temporal properties of the background. this paper proposes a new Spatio-Temporal Self-Organizing ... 详细信息
来源: 评论
Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation  30
Noisy Softmax: Improving the Generalization Ability of DCNN ...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Binghui Deng, Weihong Du, Junping Beijing Univ Posts & Telecommun Sch Informat & Commun Engn Beijing Peoples R China Beijing Univ Posts & Telecommun Sch Comp Sci Beijing Peoples R China
Over the past few years, softmax and SGD have become a commonly used component and the default training strategy in CNN frameworks, respectively. However, when optimizing CNNs with SGD, the saturation behavior behind ... 详细信息
来源: 评论
Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network  30
Regressing Robust and Discriminative 3D Morphable Models wit...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tran, Anh Tuan Hassner, Tal Masi, Iacopo Medioni, Erard USC Inst Robot & Intelligent Syst Los Angeles CA 90007 USA USC Inst Informat Sci Los Angeles CA 90007 USA Open Univ Israel Raanana Israel
the 3D shapes of faces are well known to be discriminative. Yet despite this, they are rarely used for face recognition and always under controlled viewing conditions. We claim that this is a symptom of a serious but ... 详细信息
来源: 评论
Reliable Crowdsourcing and Deep Locality-Preserving Learning for Expression recognition in the Wild  30
Reliable Crowdsourcing and Deep Locality-Preserving Learning...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Shan Deng, Weihong Du, JunPing Beijing Univ Posts & Telecommun Beijing Peoples R China
Past research on facial expressions have used relatively limited datasets, which makes it unclear whether current methods can be employed in real world. In this paper, we present a novel database, RAF-DB, which contai... 详细信息
来源: 评论
Learning Spatial Regularization with Image-level Supervisions for Multi-label Image Classification  30
Learning Spatial Regularization with Image-level Supervision...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Feng Li, Hongsheng Ouyang, Wanli Yu, Nenghai Wang, Xiaogang Univ Sci & Technol China Hefei Anhui Peoples R China Univ Sydney Sydney NSW Australia Chinese Univ Hong Kong Dept Elect Engn Hong Kong Hong Kong Peoples R China
Multi-label image classification is a fundamental but challenging task in computer vision. Great progress has been achieved by exploiting semantic relations between labels in recent years. However, conventional approa... 详细信息
来源: 评论
A Global Hypothesis Verification Framework for 3D Object recognition in Clutter
收藏 引用
ieee TRANSACTIONS ON pattern ANALYSIS AND MACHINE INTELLIGENCE 2016年 第7期38卷 1383-1396页
作者: Aldoma, Aitor Tombari, Federico Di Stefano, Luigi Vincze, Markus Vienna Univ Technol Grp ACIN Vision4Robot A-1060 Vienna Austria Univ Bologna CVLAB Grp DISI Bologna Italy
Pipelines to recognize 3D objects despite clutter and occlusions usually end up with a final verification stage whereby recognition hypotheses are validated or dismissed based on how well they explain sensor measureme... 详细信息
来源: 评论
Distributed Multi-Target Tracking and Data Association in vision Networks
收藏 引用
ieee TRANSACTIONS ON pattern ANALYSIS AND MACHINE INTELLIGENCE 2016年 第7期38卷 1397-1397页
作者: Kamal, Ahmed T. Bappy, Jawadul H. Farrell, Jay A. Roy-Chowdhury, Amit K. Univ Calif Riverside Riverside CA 92521 USA
Distributed algorithms have recently gained immense popularity. With regards to computer vision applications, distributed multi-target tracking in a camera network is a fundamental problem. the goal is for all cameras... 详细信息
来源: 评论
Real-time Action recognition with Enhanced Motion Vector CNNs  29
Real-time Action Recognition with Enhanced Motion Vector CNN...
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Bowen Wang, Limin Wang, Zhe Qiao, Yu Wang, Hanli Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen key lab Comp Vis & Pat Rec Beijing Peoples R China Tongji Univ Key Lab Embedded Syst & Serv Comp Minist Educ Shanghai Peoples R China Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland
the deep two-stream architecture [23] exhibited excellent performance on video based action recognition. the most computationally expensive step in this approach comes from the calculation of optical flow which preven... 详细信息
来源: 评论
A Comparison of Linearisation and the Unscented Transform for computer vision Applications
A Comparison of Linearisation and the Unscented Transform fo...
收藏 引用
27th Annual Symposium of the pattern-recognition-Association-of-South-Africa / 9th Robotics and Mechatronics conference of South Africa (Robmech)
作者: Chiu, Alexander Jones, thomas van Daalen, Corne E. Stellenbosch Univ Dept Elect & Elect Engn Stellenbosch South Africa
Accurate sensor noise propagation is critical for many computer vision and robotic applications. Several probabilistic computer vision techniques require estimates of sensor noise after it has been propagated through ... 详细信息
来源: 评论