咨询与建议

限定检索结果

文献类型

  • 109 篇 会议

馆藏范围

  • 109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 57 篇 电气工程
    • 57 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 2 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
  • 5 篇 理学
    • 4 篇 物理学
    • 2 篇 数学
    • 1 篇 统计学(可授理学、...
  • 2 篇 管理学
    • 2 篇 图书情报与档案管...
  • 1 篇 法学
    • 1 篇 社会学

主题

  • 22 篇 machine learning
  • 20 篇 training
  • 12 篇 deep learning
  • 11 篇 task analysis
  • 9 篇 neural networks
  • 7 篇 feature extracti...
  • 7 篇 image reconstruc...
  • 5 篇 reinforcement le...
  • 5 篇 sparse matrices
  • 5 篇 dictionaries
  • 5 篇 optimization
  • 5 篇 computational mo...
  • 5 篇 array signal pro...
  • 5 篇 data models
  • 4 篇 estimation
  • 4 篇 sensors
  • 4 篇 convolutional ne...
  • 3 篇 support vector m...
  • 3 篇 mimo communicati...
  • 3 篇 generative adver...

机构

  • 2 篇 department of el...
  • 2 篇 nyu dept elect &...
  • 2 篇 univ cent florid...
  • 2 篇 colorado state u...
  • 2 篇 department of el...
  • 1 篇 penn state univ ...
  • 1 篇 university of pi...
  • 1 篇 electrical & com...
  • 1 篇 uppsala univ dep...
  • 1 篇 czech academy of...
  • 1 篇 univ montreal fa...
  • 1 篇 laboratoire mia ...
  • 1 篇 univ mons numedi...
  • 1 篇 tech univ denmar...
  • 1 篇 univ montreal fa...
  • 1 篇 aalto university...
  • 1 篇 univ carlos iii ...
  • 1 篇 univ copenhagen ...
  • 1 篇 uppsala univ sig...
  • 1 篇 department infor...

作者

  • 2 篇 gabbouj moncef
  • 2 篇 sarkka simo
  • 2 篇 nazanin rahnavar...
  • 2 篇 moncef gabbouj
  • 2 篇 goldberger jacob
  • 2 篇 nikolaos passali...
  • 2 篇 quanyan zhu
  • 2 篇 zhu quanyan
  • 2 篇 passalis nikolao...
  • 2 篇 rahnavard nazani...
  • 1 篇 simon godsill
  • 1 篇 yinghui zhao
  • 1 篇 prato m.
  • 1 篇 lee kiwon
  • 1 篇 bouilly delphine
  • 1 篇 dupont stephane
  • 1 篇 bruce a. bassett
  • 1 篇 wiegand thomas
  • 1 篇 ford gabriel
  • 1 篇 chris j. finlay

语言

  • 109 篇 英文
检索条件"任意字段=29th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2019"
109 条 记 录,以下是1-10 订阅
排序:
2019 ieee 29th international workshop on machine learning for signal processing, mlsp 2019
2019 IEEE 29th International Workshop on Machine Learning fo...
收藏 引用
29th ieee international workshop on machine learning for signal processing, mlsp 2019
the proceedings contain 98 papers. the topics discussed include: optimal pricing in black box producer-consumer Stackelberg games using revealed preference feedback;learning warm-start points for AC optimal power flow...
来源: 评论
A NEW APPROACH TO ONLINE REGRESSION BASED ON MAXIMUM CORRENTROPY CRITERION  29
A NEW APPROACH TO ONLINE REGRESSION BASED ON MAXIMUM CORRENT...
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Bahraini, Sajjad Tuncel, Ertern Univ Calif Riverside Dept Elect & Comp Engn Riverside CA 92521 USA
the problem of linear adaptive filtering (or equivalently, online regression) in the presence of non-Gaussian noise is addressed. One efficient way in face of environments with non-Gaussian noise is to employ informat... 详细信息
来源: 评论
LARGE-SCALE SPARSE SUBSPACE CLUSTERING USING LANDMARKS  29
LARGE-SCALE SPARSE SUBSPACE CLUSTERING USING LANDMARKS
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Pourkarnali-Anaraki, Farhad Univ Massachusetts Lowell Dept Comp Sci Lowell MA 01854 USA
Subspace clustering methods based on expressing each data point as a linear combination of all other points in a dataset are popular unsupervised learning techniques. However, existing methods incur high computational... 详细信息
来源: 评论
REJECTION-SAMPLING-BASED ANCESTOR SAMPLING FOR PARTICLE GIBBS  29
REJECTION-SAMPLING-BASED ANCESTOR SAMPLING FOR PARTICLE GIBB...
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Hostettler, Roland Sarkka, Simo Uppsala Univ Dept Engn Sci Uppsala Finland Aalto Univ Dept Elect Engn & Automat Espoo Finland
Particle Gibbs with ancestor sampling is an efficient and statistically principled algorithm for learning of dynamic systems. However, the ancestor sampling step used to improve mixing of the Markov chain requires the... 详细信息
来源: 评论
GENERIC BOUNDS ON thE MAXIMUM DEVIATIONS IN SEQUENTIAL PREDICTION: AN INFORMATION-thEORETIC ANALYSIS  29
GENERIC BOUNDS ON THE MAXIMUM DEVIATIONS IN SEQUENTIAL PREDI...
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Fang, Song Zhu, Quanyan NYU Dept Elect & Comp Engn New York NY 10003 USA
In this paper, we derive generic bounds on the maximum deviations in prediction errors for sequential prediction via an information-theoretic approach. the fundamental bounds are shown to depend only on the conditiona... 详细信息
来源: 评论
REGULARIZED STATE ESTIMATION AND PARAMETER learning VIA AUGMENTED LAGRANGIAN KALMAN SMOOthER MEthOD  29
REGULARIZED STATE ESTIMATION AND PARAMETER LEARNING VIA AUGM...
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Gao, Rui Tronarp, Filip Zhao, Zheng Sarkka, Simo Aalto Univ Dept Elect Engn & Automat Rakentajanaukio 2C Espoo Finland
In this article, we address the problem of estimating the state and learning of the parameters in a linear dynamic system with generalized L-1-regularization. Assuming a sparsity prior on the state, the joint state es... 详细信息
来源: 评论
learning WARM-START POINTS FOR AC OPTIMAL POWER FLOW  29
LEARNING WARM-START POINTS FOR AC OPTIMAL POWER FLOW
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Baker, Kyri Univ Colorado Boulder CO 80309 USA
A large amount of data has been generated by grid operators solving AC optimal power flow (ACOPF) throughout the years, and we explore how leveraging this data can be used to help solve future ACOPF problems. We use t... 详细信息
来源: 评论
INTERPRETABLE ONLINE BANKING FRAUD DETECTION BASED ON HIERARCHICAL ATTENTION MECHANISM  29
INTERPRETABLE ONLINE BANKING FRAUD DETECTION BASED ON HIERAR...
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Achituve, Idan Kraus, Sarit Goldberger, Jacob Bar Ilan Univ IL-52100 Ramat Gan Israel
Online banking activities are constantly growing and are likely to become even more common as digital banking platforms evolve. One side effect of this trend is the rise in attempted fraud. However, there is very litt... 详细信息
来源: 评论
A DEEP NETWORK FOR SINGLE-SNAPSHOT DIRECTION OF ARRIVAL ESTIMATION  29
A DEEP NETWORK FOR SINGLE-SNAPSHOT DIRECTION OF ARRIVAL ESTI...
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Ozanich, Emma Gerstoft, Peter Niu, Haiqiang Univ Calif San Diego Scripps Inst Oceanog La Jolla CA 92093 USA Chinese Acad Sci Inst Acoust Beijing 100190 Peoples R China
this paper examines a deep feedforward network for beamforming with the single-snapshot sample covariance matrix (SCM). the conventional beamforming formulation, typically quadratic in the complex weight space, is ref... 详细信息
来源: 评论
EFFICIENT PRE-DESIGNED CONVOLUTIONAL FRONT-END FOR DEEP learning  29
EFFICIENT PRE-DESIGNED CONVOLUTIONAL FRONT-END FOR DEEP LEAR...
收藏 引用
ieee 29th international workshop on machine learning for signal processing (mlsp)
作者: Baali, Hamza Bouzerdoum, Abdesselam Hamad Bin Khalifs Univ Coll Sci & Engn Div Informat & Comp Technol Doha Qatar Univ Wollongong Sch Elect Comp & Telecommun Engn Wollongong NSW Australia
this paper introduces a hierarchical learning paradigm based on a predesigned directional filter bank front-end analogous to the energy model for complex cells. the filter bank front-end is designed to extract common ... 详细信息
来源: 评论