咨询与建议

限定检索结果

文献类型

  • 128 篇 会议
  • 3 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 133 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 115 篇 工学
    • 104 篇 计算机科学与技术...
    • 29 篇 软件工程
    • 13 篇 电气工程
    • 11 篇 信息与通信工程
    • 9 篇 生物医学工程(可授...
    • 9 篇 生物工程
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 3 篇 交通运输工程
    • 2 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
  • 35 篇 理学
    • 16 篇 数学
    • 16 篇 生物学
    • 8 篇 物理学
    • 7 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 系统科学
  • 14 篇 医学
    • 13 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
    • 1 篇 特种医学
  • 10 篇 管理学
    • 6 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 21 篇 neural networks
  • 7 篇 artificial neura...
  • 6 篇 pattern recognit...
  • 5 篇 neurons
  • 5 篇 artificial intel...
  • 4 篇 deep learning
  • 4 篇 deep neural netw...
  • 4 篇 artificial neura...
  • 4 篇 training
  • 3 篇 face recognition
  • 3 篇 feature extracti...
  • 3 篇 recurrent neural...
  • 2 篇 mixture modeling
  • 2 篇 training data
  • 2 篇 image segmentati...
  • 2 篇 convolution
  • 2 篇 semisupervised l...
  • 2 篇 computed tomogra...
  • 2 篇 independent comp...
  • 2 篇 predictive model...

机构

  • 8 篇 univ ulm inst ne...
  • 5 篇 univ ulm dept ne...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ hosp ulm de...
  • 2 篇 univ siena dipar...
  • 2 篇 univ siena diism...
  • 2 篇 univ sherbrooke ...
  • 2 篇 univ leipzig ins...
  • 1 篇 medical imaging ...
  • 1 篇 dipartimento di ...
  • 1 篇 national institu...
  • 1 篇 department of bi...
  • 1 篇 nanyang technol ...
  • 1 篇 univ sao paulo i...
  • 1 篇 tech univ claust...
  • 1 篇 gene expression ...
  • 1 篇 natl tsing hua u...
  • 1 篇 ipk gatersleben ...
  • 1 篇 university of no...

作者

  • 13 篇 schwenker friedh...
  • 7 篇 palm guenther
  • 5 篇 kestler hans a.
  • 4 篇 hernandez-espino...
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 3 篇 trentin edmondo
  • 3 篇 hammer barbara
  • 3 篇 bianchini monica
  • 2 篇 granger eric
  • 2 篇 sarti lorenzo
  • 2 篇 villmann thomas
  • 2 篇 maggini marco
  • 2 篇 ziou d
  • 2 篇 lin feng
  • 2 篇 windeatt terry
  • 2 篇 fausser stefan
  • 2 篇 piantadosi gabri...
  • 2 篇 hasenfuss alexan...
  • 2 篇 seiffert udo

语言

  • 132 篇 英文
  • 1 篇 中文
检索条件"任意字段=2nd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
133 条 记 录,以下是1-10 订阅
排序:
Gaussian-Mixture neural networks  11th
Gaussian-Mixture Neural Networks
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Meconcelli, Duccio Trentin, Edmondo Univ Siena DIISM Siena Italy
Density estimation is crucial to statistical pattern recognition, in both the supervised and unsupervised frameworks. It is still an open problem, due to its intrinsic difficulties and to the many shortcomings of stat... 详细信息
来源: 评论
A Hybrid Neuroevolutionary Approach to the Design of Convolutional neural networks for 2D and 3D Medical Image Segmentation  11th
A Hybrid Neuroevolutionary Approach to the Design of Convolu...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Ramesh, Nivedha Ashfaq, Tabish Kharma, Nawwaf Concordia Univ Dept Elect & Comp Engn Montreal PQ Canada
The evolution of Convolutional neural networks (CNNs) has revolutionized medical image segmentation, yet designing optimal architectures remains a challenge. In this paper, we introduce a hybrid evolutionary algorithm... 详细信息
来源: 评论
11th iapr TC3 workshop on artificial neural networks in pattern recognition, ANNPR 2024
11th IAPR TC3 workshop on Artificial Neural Networks in Patt...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition, ANNPR 2024
The proceedings contain 27 papers. The special focus in this conference is on artificial neural networks in pattern recognition. The topics include: neural Decompiling of Tracr Transformers;pitfalls in Proce...
来源: 评论
A Novel Representation of Graphical patterns for Graph Convolution networks  10th
A Novel Representation of Graphical Patterns for Graph Convo...
收藏 引用
10th iapr TC3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: Benini, Marco Bongini, Pietro Trentin, Edmondo Univ Siena DIISM Siena Italy
In the context of machine learning on graph data, graph deep learning has captured the attention of many researcher. Due to the promising results of deep learning models in the most diverse fields of application, grea... 详细信息
来源: 评论
Leveraging LSTM Embeddings for River Water Temperature Modeling  11th
Leveraging LSTM Embeddings for River Water Temperature Model...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Fankhauser, Benjamin Bigler, Vidushi Riesen, Kaspar Univ Bern Inst Comp Sci Bern Switzerland Bern Univ Appl Sci Inst Optimisat & Data Anal Biel Switzerland
River water temperature modeling is a major task in climate research. State-of-the-art methods for water temperature modeling deploy a transductive design, which makes it difficult to generalize to unseen water statio... 详细信息
来源: 评论
Medical Deepfake Detection using 3-Dimensional neural Learning  10th
Medical Deepfake Detection using 3-Dimensional Neural Learni...
收藏 引用
10th iapr TC3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: Sharafudeen, Misaj Chandra, S. S. Vinod Univ Kerala Dept Comp Sci Thiruvananthapuram Kerala India
In recent years, Generative Adversarial networks (GAN) have underlined the necessity for exercising caution in trusting digital information. Injection and removal of tumorous nodules from medical imaging modalities is... 详细信息
来源: 评论
An Improved Pix2Pix GAN for Medical Image Generation  11th
An Improved Pix2Pix GAN for Medical Image Generation
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Deng, Yanlin Ling, Jingwen Rao, Xiaqing Tan, Jun Fu, Xiaoyong Li, Sheng Sun Yat Sen Univ Sch Math Guangzhou 510275 Peoples R China Sun Yat Sen Univ Guangdong Prov Key Lab Computat Sci Guangzhou 510275 Peoples R China Sun Yat Sen Univ Dept Radiol Guangdong Prov Clin Res Ctr Canc State Key Lab Oncol South ChinaCanc Ctr Guangzhou 510060 Peoples R China
Generating missing modality medical images using deep learning is crucial for disease diagnosis, treatment planning, and medical education. With the rapid development of deep learning, Generative Adversarial networks ... 详细信息
来源: 评论
13th iapr-TC-15 International workshop on Graph-Based Representations in pattern recognition, GbRPR 2023
13th IAPR-TC-15 International Workshop on Graph-Based Repres...
收藏 引用
13th iapr-TC-15 International workshop on Graph-Based Representations in pattern recognition, GbRPR 2023
The proceedings contain 16 papers. The special focus in this conference is on . The topics include: Maximal Independent Sets for Pooling in Graph neural networks;detecting Abnormal Communication patterns in&...
来源: 评论
Se2NAS: Self-Semi-Supervised architecture optimization for Semantic Segmentation  26
Se<SUP>2</SUP>NAS: Self-Semi-Supervised architecture optimiz...
收藏 引用
26th International Conference on pattern recognition / 8th International workshop on Image Mining - Theory and Applications (IMTA)
作者: Pauletto, Loic Amini, Massih-Reza Winckler, Nicolas ATOS Grenoble France Univ Grenoble Alpes Grenoble France
In this paper, we propose a neural Architecture Search strategy based on self supervision and semi-supervised learning for the task of semantic segmentation. Our approach builds an optimized neural network (NN) model ... 详细信息
来源: 评论
Natural Language Processing-based Model for Log Anomaly Detection  2
Natural Language Processing-based Model for Log Anomaly Dete...
收藏 引用
2nd IEEE International Conference on Software Engineering and artificial Intelligence (SEAI) / 7th International workshop on pattern recognition (IWPR)
作者: Li, Zezhou Zhang, Jing Zhang, Xianbo Lin, Feng Wang, Chao Cai, Xingye JD Tech Beijing Peoples R China
Logs are widely used in IT industry and the anomaly detection of logs is essential to identify the running status of systems. Conventional methods solving this problem require sophisticated rule-based regulations and ... 详细信息
来源: 评论