咨询与建议

限定检索结果

文献类型

  • 128 篇 会议
  • 4 册 图书
  • 3 篇 期刊文献

馆藏范围

  • 135 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 115 篇 工学
    • 104 篇 计算机科学与技术...
    • 29 篇 软件工程
    • 13 篇 电气工程
    • 11 篇 信息与通信工程
    • 9 篇 生物医学工程(可授...
    • 9 篇 生物工程
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 3 篇 交通运输工程
    • 2 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
  • 35 篇 理学
    • 16 篇 数学
    • 16 篇 生物学
    • 8 篇 物理学
    • 7 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 系统科学
  • 14 篇 医学
    • 13 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 药学(可授医学、理...
    • 1 篇 公共卫生与预防医...
    • 1 篇 特种医学
  • 10 篇 管理学
    • 6 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 2 篇 农学
    • 2 篇 作物学

主题

  • 21 篇 neural networks
  • 7 篇 pattern recognit...
  • 7 篇 artificial intel...
  • 7 篇 artificial neura...
  • 5 篇 neurons
  • 4 篇 deep learning
  • 4 篇 deep neural netw...
  • 4 篇 artificial neura...
  • 4 篇 training
  • 3 篇 face recognition
  • 3 篇 feature extracti...
  • 3 篇 recurrent neural...
  • 2 篇 mixture modeling
  • 2 篇 training data
  • 2 篇 image segmentati...
  • 2 篇 data mining and ...
  • 2 篇 convolution
  • 2 篇 semisupervised l...
  • 2 篇 computed tomogra...
  • 2 篇 independent comp...

机构

  • 8 篇 univ ulm inst ne...
  • 5 篇 univ ulm dept ne...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ hosp ulm de...
  • 2 篇 univ siena dipar...
  • 2 篇 univ siena diism...
  • 2 篇 univ sherbrooke ...
  • 2 篇 univ leipzig ins...
  • 1 篇 medical imaging ...
  • 1 篇 dipartimento di ...
  • 1 篇 national institu...
  • 1 篇 department of bi...
  • 1 篇 nanyang technol ...
  • 1 篇 univ sao paulo i...
  • 1 篇 university of si...
  • 1 篇 tech univ claust...
  • 1 篇 gene expression ...
  • 1 篇 natl tsing hua u...
  • 1 篇 ipk gatersleben ...

作者

  • 13 篇 schwenker friedh...
  • 7 篇 palm guenther
  • 5 篇 kestler hans a.
  • 4 篇 hernandez-espino...
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 3 篇 trentin edmondo
  • 3 篇 hammer barbara
  • 3 篇 bianchini monica
  • 2 篇 granger eric
  • 2 篇 sarti lorenzo
  • 2 篇 villmann thomas
  • 2 篇 maggini marco
  • 2 篇 ziou d
  • 2 篇 lin feng
  • 2 篇 windeatt terry
  • 2 篇 friedhelm schwen...
  • 2 篇 fausser stefan
  • 2 篇 piantadosi gabri...
  • 2 篇 hasenfuss alexan...

语言

  • 134 篇 英文
  • 1 篇 中文
检索条件"任意字段=2nd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
135 条 记 录,以下是11-20 订阅
排序:
Fuzzy labeled self-organizing map with label-adjusted prototypes
收藏 引用
2nd iapr workshop on artificial neural networks in pattern recognition
作者: Villmann, Thomas Seiffert, Udo Schleif, Frank-Michael Bruess, Cornelia Geweniger, Tina Hammer, Barbara Univ Leipzig Dept Med D-7010 Leipzig Germany IPK Gatersleben Pattern Recognit Grp Gatersleben Germany BRUKER Daltonik Leipzig Numer Toolbox Grp Leipzig Germany Univ Leipzig Inst Comp Sci D-7010 Leipzig Germany Tech Univ Clausthal Inst Comp Sci D-3392 Clausthal Zellerfeld Germany
We extend the self-organizing map (SOM) in the form as proposed by Heskes to a supervised fuzzy classification method. On the one hand, this leads to a robust classifier where efficient learning with fuzzy labeled or ... 详细信息
来源: 评论
Supervised batch neural gas
收藏 引用
2nd iapr workshop on artificial neural networks in pattern recognition
作者: Hammer, Barbara Hasenfuss, Alexander Schleif, Frank-Michael Villmann, Thomas Tech Univ Clausthal Inst Comp Sci D-3392 Clausthal Zellerfeld Germany Univ Leipzig Inst Comp Sci D-7010 Leipzig Germany Univ Leipzig Clin Psychotherapy D-7010 Leipzig Germany
Recently, two extensions of neural gas have been proposed: a fast batch version of neural gas for data given in advance, and extensions of neural gas to learn a (possibly fuzzy) supervised classification. Here we prop... 详细信息
来源: 评论
Object detection and feature base learning with sparse convolutional neural networks
收藏 引用
2nd iapr workshop on artificial neural networks in pattern recognition
作者: Gepperth, Alexander R. T. Inst Neural Dynam D-44780 Bochum Germany
A new convolutional neural network model termed sparse convolutional neural network (SCNN) is presented and its usefulness for real-time object detection in gray-valued, monocular video sequences is demonstrated. SCNN... 详细信息
来源: 评论
Unsupervised feature selection for biomarker identification in chromatography and gene expression data
收藏 引用
2nd iapr workshop on artificial neural networks in pattern recognition
作者: Strickert, Marc Sreenivasulu, Nese Peterek, Silke Weschke, Winfriede Mock, Hans-Peter Seiffert, Udo Pattern Recognition Group Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany Gene Expression Group Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany Applied Biochemistry Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany
A novel approach to feature selection from unlabeled vector data is presented. It is based on the reconstruction of original data relationships in an auxiliary space with either weighted or omitted features. Feature w... 详细信息
来源: 评论
Learning and feature selection using the set covering machine with data-dependent rays on gene expression profiles
收藏 引用
2nd iapr workshop on artificial neural networks in pattern recognition
作者: Kestler, Hans A. Lindner, Wolfgang Mueller, Andre Univ Ulm Neural Informat Proc D-89069 Ulm Germany Univ Hosp Ulm D-89081 Ulm Germany
Microarray technologies are increasingly being used in biological and medical sciences for high throughput analyses of genetic information on the genome, transcriptome and proteome levels. The differentiation between ... 详细信息
来源: 评论
A study of the robustness of KNN classifiers trained using soft labels
收藏 引用
2nd iapr workshop on artificial neural networks in pattern recognition
作者: El Gayar, Neamat Schwenker, Friedhelm Palm, Guenther Cairo Univ Fac Comp & Informat Giza 12613 Egypt Univ Ulm Dept Neural Informat Proc D-89069 Ulm Germany
Supervised learning models most commonly use crisp labels for classifier training. Crisp labels fail to capture the data characteristics when overlapping classes exist. In this work we attempt to compare between learn... 详细信息
来源: 评论
artificial neural networks in pattern recognition - Second iapr workshop, ANNPR 2006, Proceedings
收藏 引用
2nd iapr workshop on artificial neural networks in pattern recognition, ANNPR 2006
The proceedings contain 26 papers. The topics discussed include: simple and effective connectionist nonparametric estimation of probability density functions;comparison between two spatio-temporal organization maps fo... 详细信息
来源: 评论
Modified minimum classification error learning and its application to neural networks  7th
收藏 引用
7th Joint iapr International workshop on Structural and Syntactic pattern recognition, SSPR 1998 and 2nd International workshop on Statistical Techniques in pattern recognition, SPR 1998
作者: Shimodaira, Hiroshi Rokui, Jun Nakai, Mitsuru School of Information Science Japan Advanced Institute of Science and Technology TatsunokuchiIshikawa923-1292 Japan
A novel method to improve the generalization performance of the Minimum Classification Error (MCE) / Generalized Probabilistic Descent (GPD) learning is proposed. The MCE / GPD learning proposed by Juang and Katagiri ... 详细信息
来源: 评论
On virtually binary nature of probabilistic neural networks  7th
收藏 引用
7th Joint iapr International workshop on Structural and Syntactic pattern recognition, SSPR 1998 and 2nd International workshop on Statistical Techniques in pattern recognition, SPR 1998
作者: Grim, Jiří Pudil, Pavel Institute of Information Theory and Automation Academy of Sciences of the Czech Republic P.O. Box 18 Prague 8CZ-18208 Czech Republic
A sequential design of multilayer probabilistic neural networks is considered in the framework of statistical decision-making. Parameters and interconnection structure are optimized layer-by-layer by estimating unknow... 详细信息
来源: 评论
Real-time emotion recognition from speech using echo state networks
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: Scherer, Stefan Oubbati, Mohamed Schwenker, Friedhelm Palm, Guenther Univ Ulm Inst Neural Informat Proc D-89069 Ulm Germany
The goal of this work is to investigate real-time emotion recognition in noisy environments. Our approach is to solve this problem using novel recurrent neural networks called echo state networks (ESN). ESNs utilizing... 详细信息
来源: 评论