咨询与建议

限定检索结果

文献类型

  • 109 篇 会议

馆藏范围

  • 109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 86 篇 工学
    • 64 篇 电气工程
    • 39 篇 计算机科学与技术...
    • 9 篇 机械工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 信息与通信工程
    • 4 篇 光学工程
    • 4 篇 仪器科学与技术
    • 3 篇 控制科学与工程
    • 3 篇 测绘科学与技术
    • 3 篇 软件工程
    • 1 篇 动力工程及工程热...
  • 28 篇 理学
    • 28 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 系统科学
  • 3 篇 医学
    • 3 篇 临床医学

主题

  • 14 篇 conferences
  • 14 篇 estimation
  • 9 篇 covariance matri...
  • 7 篇 signal to noise ...
  • 7 篇 computational mo...
  • 5 篇 parameter estima...
  • 5 篇 adaptation model...
  • 4 篇 eigenvalues and ...
  • 4 篇 noise measuremen...
  • 4 篇 target tracking
  • 4 篇 signal processin...
  • 4 篇 direction of arr...
  • 4 篇 covariance matri...
  • 4 篇 gaussian noise
  • 4 篇 signal processin...
  • 4 篇 time measurement
  • 4 篇 mathematical mod...
  • 4 篇 maximum likeliho...
  • 3 篇 probability dens...
  • 3 篇 mimo radar

机构

  • 3 篇 univ alberta dep...
  • 3 篇 l2s/centralesupe...
  • 3 篇 mcgill univ dept...
  • 3 篇 univ alberta dep...
  • 2 篇 aalto univ dept ...
  • 2 篇 icd-lm2s univers...
  • 2 篇 ens cachan satie...
  • 2 篇 off natl etud & ...
  • 2 篇 univ michigan de...
  • 2 篇 cs 60584 f-83041...
  • 2 篇 univ toulouse is...
  • 2 篇 univ paris 11 cn...
  • 2 篇 department of ma...
  • 2 篇 univ alberta edm...
  • 2 篇 univ paris 07 la...
  • 2 篇 sondra centrales...
  • 1 篇 université paris...
  • 1 篇 suny buffalo dep...
  • 1 篇 inserm u1099 f-3...
  • 1 篇 univ paris est m...

作者

  • 8 篇 vorobyov sergiy ...
  • 6 篇 tourneret jean-y...
  • 6 篇 pascal frederic
  • 5 篇 frédéric pascal
  • 5 篇 chaumette eric
  • 5 篇 boyer remy
  • 4 篇 el korso mohamme...
  • 4 篇 vincent francois
  • 4 篇 jing yindi
  • 4 篇 mohammed nabil e...
  • 4 篇 larzabal pascal
  • 3 篇 renaux alexandre
  • 3 篇 coates mark
  • 3 篇 pascal larzabal
  • 3 篇 alexandre renaux
  • 3 篇 remy boyer
  • 3 篇 eric chaumette
  • 3 篇 godsill simon
  • 3 篇 pal soumyasundar
  • 3 篇 marcos sylvie

语言

  • 106 篇 英文
  • 3 篇 中文
检索条件"任意字段=2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing"
109 条 记 录,以下是11-20 订阅
排序:
HYPERSPECTRAL ANOMALY DETECTION ON THE SPHERE  8
HYPERSPECTRAL ANOMALY DETECTION ON THE SPHERE
收藏 引用
8th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Frontera-Pons, Joana Inst Polytech Sci Avancees DR2I F-94200 Ivry France Univ Paris Saclay Lab AIM CEA F-91191 Gif Sur Yvette France
Anomaly detectors aim at finding any pixel that is different from its surrounding normal background pixels. Most of the classical anomaly detection algorithms are based on the Mahalanobis distance, and therefore, they... 详细信息
来源: 评论
A new clustering algorithm for PolSAR images segmentation  8
A new clustering algorithm for PolSAR images segmentation
收藏 引用
8th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Roizman, Violeta Draskovic, Gordana Pascal, Frederic Cent Supelec L2S Paris France Univ Buenos Aires Buenos Aires DF Argentina Univ Paris Saclay Cent Supelec L2S Paris France
This paper deals with polarimetric synthetic aperture radar (PolSAR) image segmentation. More precisely, we present a new robust clustering algorithm designed for non-Gaussian data. The algorithm is based on an expect... 详细信息
来源: 评论
Spectral Shrinkage of Tyler's M-Estimator of Covariance Matrix  8
Spectral Shrinkage of Tyler's M-Estimator of Covariance Matr...
收藏 引用
8th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Breloy, Arnaud Ollila, Esa Pascal, Frederic Univ Paris Nanterre LEME EA 4416 Nanterre France Aalto Univ Dept Signal Proc & Acoust Espoo Finland Univ Paris Saclay CentraleSupelec L2S Paris France
Covariance matrices usually exhibit specific spectral structures, such as low-rank ones in the case of factor models. In order to exploit this prior knowledge in a robust estimation process, we propose a new regulariz... 详细信息
来源: 评论
A COMPARATIVE STUDY OF THE PERFORMANCE OF PARAMETER ESTIMATION OF A 2-D FIELD USING LINE- And POINT-PROJECTION sensorS  8
A COMPARATIVE STUDY OF THE PERFORMANCE OF PARAMETER ESTIMATI...
收藏 引用
8th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Gat, Shani Messer, Hagit Tel Aviv Univ Sch Elect Engn Tel Aviv Israel
The signal's attenuation measured over wireless Commercial Microwave Links (CMLs) have proven to be an effective tool for opportunistic environmental sensing. By nature, a CML senses the projection along the propa... 详细信息
来源: 评论
Node Copying for Protection Against Graph Neural Network Topology Attacks  8
Node Copying for Protection Against Graph Neural Network Top...
收藏 引用
8th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Regol, Florence Pal, Soumyasundar Coates, Mark McGill Univ Dept Elect & Comp Engn 3480 Univ St Montreal PQ H3A 2A7 Canada
Adversarial attacks can affect the performance of existing deep learning models. With the increased interest in graph based machine learning techniques, there have been investigations which suggest that these models a... 详细信息
来源: 评论
Particle Flow Particle Filter using Gromov's method  8
Particle Flow Particle Filter using Gromov's method
收藏 引用
8th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Pal, Soumyasundar Coates, Mark McGill Univ Dept Elect & Comp Engn 3480 Univ St Montreal PQ H3A 2A7 Canada
Particle flow filters obtain impressive results in challenging high dimensional, non-linear sequential state estimation problems. In contrast to a particle filter, which uses importance sampling to approximate the pos... 详细信息
来源: 评论
INCORPORATING HAndCRAFTED FILTERS IN CONVOLUTIONAL ANALYSIS OPERATOR LEARNING FOR ILL-POSED INVERSE PROBLEMS  8
INCORPORATING HANDCRAFTED FILTERS IN CONVOLUTIONAL ANALYSIS ...
收藏 引用
8th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Crockett, Caroline Hong, David Chun, Il Yong Fessler, Jeffrey A. Univ Michigan Dept EECS Ann Arbor MI 48109 USA Univ Hawaii Manoa Dept EE Honolulu HI 96822 USA
Convolutional analysis operator learning (CAOL) enables the unsupervised training of convolutional sparsifying autoencoders, taking advantage of large datasets to obtain high quality filters. In previous works, using ... 详细信息
来源: 评论
PERFORMANCE ANALYSIS OF A LOW-RANK DETECTOR UndER TRAINING DATA CONTAMINATION  8
PERFORMANCE ANALYSIS OF A LOW-RANK DETECTOR UNDER TRAINING D...
收藏 引用
8th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Vallet, P. Ginolhac, G. Pascal, F. Forster, P. Univ Bordeaux Bordeaux INP CNRS IMS Talence France Univ Savoie Mt Blanc Polytech Annecy LISTIC Annecy France Univ Paris Sud Cent Suplec CNRS L2S Gif Sur Yvette France Univ Paris Sud ENS Paris Saclay CNRS SATIE Cachan France
We consider the problem of detecting a known M-dimensional target signature vector from an observation corrupted by an additive noise with unknown covariance matrix. In that case, standard statistical methods of detec... 详细信息
来源: 评论
AN EXAMPLE OF NON-STAndARD BEHAVIOR OF A MAXIMUM LIKELIHOOD ESTIMATOR IN THE LARGE SAMPLE REGIME  8
AN EXAMPLE OF NON-STANDARD BEHAVIOR OF A MAXIMUM LIKELIHOOD ...
收藏 引用
8th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Bacharach, Lucien Galy, Jerome Chaumette, Eric Vincent, Francois Renaux, Alexandre El Korso, Mohammed Nabil Univ Toulouse ISAE Supaero Toulouse France Univ Paris Sud SATIE Cachan France Univ Montpellier LIRMM Montpellier France Univ Paris Nanterre LEME Ville Davray France Univ Paris Sud L2S Gif Sur Yvette France
In this paper, the performance of a maximum likelihood estimator (MLE) for a signal model accounting for possible coherence of the signal sources is studied. It is done by combining a dynamical evolution model of the ... 详细信息
来源: 评论
PROJECTION BACK ONTO FILTERED OBSERVATIONS FOR SPEECH SEPARATION WITH DISTRIBUTED MICROPHONE ARRAY  8
PROJECTION BACK ONTO FILTERED OBSERVATIONS FOR SPEECH SEPARA...
收藏 引用
8th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Araki, Shoko Ono, Nobutaka Kinoshita, Keisuke Delcroix, Marc NTT Corp NTT Commun Sci Labs 2-4 HikaridaiSeika Cho Kyoto 6190237 Japan Tokyo Metropolitan Univ Fac Syst Design 6-6 Asahigaoka Hino Tokyo 1910065 Japan
Many speech enhancement approaches generally estimate a source image on a reference microphone. For example, blind source separation approaches including independent vector analysis (IVA) usually determine the scales ... 详细信息
来源: 评论