咨询与建议

限定检索结果

文献类型

  • 109 篇 会议

馆藏范围

  • 109 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 86 篇 工学
    • 64 篇 电气工程
    • 39 篇 计算机科学与技术...
    • 9 篇 机械工程
    • 8 篇 电子科学与技术(可...
    • 6 篇 信息与通信工程
    • 4 篇 光学工程
    • 4 篇 仪器科学与技术
    • 3 篇 控制科学与工程
    • 3 篇 测绘科学与技术
    • 3 篇 软件工程
    • 1 篇 动力工程及工程热...
  • 28 篇 理学
    • 28 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 系统科学
  • 3 篇 医学
    • 3 篇 临床医学

主题

  • 14 篇 conferences
  • 14 篇 estimation
  • 9 篇 covariance matri...
  • 7 篇 signal to noise ...
  • 7 篇 computational mo...
  • 5 篇 parameter estima...
  • 5 篇 adaptation model...
  • 4 篇 eigenvalues and ...
  • 4 篇 noise measuremen...
  • 4 篇 target tracking
  • 4 篇 signal processin...
  • 4 篇 direction of arr...
  • 4 篇 covariance matri...
  • 4 篇 gaussian noise
  • 4 篇 signal processin...
  • 4 篇 time measurement
  • 4 篇 mathematical mod...
  • 4 篇 maximum likeliho...
  • 3 篇 probability dens...
  • 3 篇 mimo radar

机构

  • 3 篇 univ alberta dep...
  • 3 篇 l2s/centralesupe...
  • 3 篇 mcgill univ dept...
  • 3 篇 univ alberta dep...
  • 2 篇 aalto univ dept ...
  • 2 篇 icd-lm2s univers...
  • 2 篇 ens cachan satie...
  • 2 篇 off natl etud & ...
  • 2 篇 univ michigan de...
  • 2 篇 cs 60584 f-83041...
  • 2 篇 univ toulouse is...
  • 2 篇 univ paris 11 cn...
  • 2 篇 department of ma...
  • 2 篇 univ alberta edm...
  • 2 篇 univ paris 07 la...
  • 2 篇 sondra centrales...
  • 1 篇 université paris...
  • 1 篇 suny buffalo dep...
  • 1 篇 inserm u1099 f-3...
  • 1 篇 univ paris est m...

作者

  • 8 篇 vorobyov sergiy ...
  • 6 篇 tourneret jean-y...
  • 6 篇 pascal frederic
  • 5 篇 frédéric pascal
  • 5 篇 chaumette eric
  • 5 篇 boyer remy
  • 4 篇 el korso mohamme...
  • 4 篇 vincent francois
  • 4 篇 jing yindi
  • 4 篇 mohammed nabil e...
  • 4 篇 larzabal pascal
  • 3 篇 renaux alexandre
  • 3 篇 coates mark
  • 3 篇 pascal larzabal
  • 3 篇 alexandre renaux
  • 3 篇 remy boyer
  • 3 篇 eric chaumette
  • 3 篇 godsill simon
  • 3 篇 pal soumyasundar
  • 3 篇 marcos sylvie

语言

  • 106 篇 英文
  • 3 篇 中文
检索条件"任意字段=2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing"
109 条 记 录,以下是21-30 订阅
排序:
A new clustering algorithm for PolSAR images segmentation
A new clustering algorithm for PolSAR images segmentation
收藏 引用
ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Violeta Roizman Gordana Draskovic Frédéric Pascal L2S/CentraleSupélec Universidad de Buenos Aires Argentina France L2S / CentraleSupélec University Paris-Saclay France
This paper deals with polarimetric synthetic aperture radar (PolSAR) image segmentation. More precisely, we present a new robust clustering algorithm designed for non-Gaussian data. The algorithm is based on an expect... 详细信息
来源: 评论
Maximization of the Fisher Information in PDA
Maximization of the Fisher Information in PDA
收藏 引用
ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Jérémy Payan Claude Jauffret Annie-Claude Pérez Aix Marseille Université Université de Toulon CNRS IM2NP CS 60584 83041 Cedex 9 Marseille TOULON France
In a cluttered environment, the probabilistic data association (PDA) model allows constructing efficient estimators. In this case, the Fisher information matrix (FIM) is equal to the FIM in the clean environment multi... 详细信息
来源: 评论
A Comparative Study of the Performance of Parameter Estimation of a 2-D Field Using Line- and Point-Projection sensors
A Comparative Study of the Performance of Parameter Estimati...
收藏 引用
ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Shani Gat Hagit Messer School of Electrical Engineering Tel-Aviv University ISRAEL
The signal's attenuation measured over wireless Commercial Microwave Links (CMLs) have proven to be an effective tool for opportunistic environmental sensing. By nature, a CML senses the projection along the propa... 详细信息
来源: 评论
Spectral Shrinkage of Tyler's $M$-Estimator of Covariance Matrix
Spectral Shrinkage of Tyler's $M$-Estimator of Covariance Ma...
收藏 引用
ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Arnaud Breloy Esa Ollila Frédéric Pascal LEME (EA 4416) University Paris Nanterre France Aalto University Finland L2S / CentraleSupelec University Paris-Saclay France
Covariance matrices usually exhibit specific spectral structures, such as low-rank ones in the case of factor models. In order to exploit this prior knowledge in a robust estimation process, we propose a new regulariz... 详细信息
来源: 评论
An Example of Non-Standard Behavior of a Maximum Likelihood Estimator in the Large Sample Regime
An Example of Non-Standard Behavior of a Maximum Likelihood ...
收藏 引用
ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Lucien Bacharach Jérôme Galy Éric Chaumette François Vincent Alexandre Renaux Mohammed Nabil El Korso UniversitéParis-Sud/SATIE Cachan France University of Montpellier/LIRMM Montpellier France University of Toulouse/ISAE-Supaéro Toulouse France Université Paris Nanterre/LEME Ville d'Avray France Université Paris-Sud/L2S Gif-sur-Yvette France
In this paper, the performance of a maximum likelihood estimator (MLE) for a signal model accounting for possible coherence of the signal sources is studied. It is done by combining a dynamical evolution model of the ... 详细信息
来源: 评论
Projection Back onto Filtered Observations for Speech Separation with Distributed Microphone Array
Projection Back onto Filtered Observations for Speech Separa...
收藏 引用
ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Shoko Araki Nobutaka Ono Keisuke Kinoshita Marc Delcroix NTT Communication Science Laboratories NTT Corporation 2-4 Hikaridai Seika-cho Soraku-gun Kyoto Japan Faculty of System Design Tokyo Metropolitan University 6-6 Asahigaoka Hino-shi Tokyo Japan
Many speech enhancement approaches generally estimate a source image on a reference microphone. For example, blind source separation approaches including independent vector analysis (IVA) usually determine the scales ... 详细信息
来源: 评论
Performance Analysis of a Low-Rank Detector Under Training Data Contamination
Performance Analysis of a Low-Rank Detector Under Training D...
收藏 引用
ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: P. Vallet G. Ginolhac F. Pascal P. Forster IMS (CNRS Univ. Bordeaux Bordeaux INP) Talence France LISTIC (Univ. Savoie/Mont-Blanc Polytech Annecy) Annecy France L2S (CNRS Univ. Paris-Sud CentraleSuplec) Gif sur Yvette France SATIE (CNRS Univ. Paris-Sud ENS Paris-Saclay) Cachan France
We consider the problem of detecting a known M-dimensional target signature vector from an observation corrupted by an additive noise with unknown covariance matrix. In that case, standard statistical methods of detec... 详细信息
来源: 评论
Performance of Range-Only TMA  7
Performance of Range-Only TMA
收藏 引用
7th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Perez, Annie-Claude Jauffret, Claude Pillon, Denis Univ Toulon & Var Aix Marseille Univ CNRS IM2NP Marseille France CS 60584 F-83041 Toulon 9 France Thonon France Toulon France
Range-only target motion analysis (ROTMA) is the topic of this paper: we focus our study on the numerical aspect and performance of the maximum likelihood estimates (MLE) for some scenarios when the noise polluting th... 详细信息
来源: 评论
computational advances in Sparse L1-norm Principal-Component Analysis of multi-Dimensional Data  7
Computational Advances in Sparse L1-norm Principal-Component...
收藏 引用
7th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Chamadia, Shubham Pados, Dimitris A. SUNY Buffalo Dept Elect Engn Buffalo NY 14260 USA
We consider the problem of extracting a sparse L-1-norm principal component from a data matrix X is an element of R-DxN of N observation vectors of dimension D. Recently, an optimal algorithm was presented in the lite... 详细信息
来源: 评论
A General Class of Recursive Minimum Variance Distortionless Response Estimators  7
A General Class of Recursive Minimum Variance Distortionless...
收藏 引用
7th ieee international workshop on computational advances in multi-sensor adaptive processing (CAMSAP)
作者: Galy, Jerome Chaumette, Eric Vincent, Francois Univ Montpellier 2 LIRMM Montpellier France Univ Toulouse ISAE Supaero Toulouse France
In deterministic parameters estimation, it is common place to design a minimum variance distortionless response estimator (MVDRE) instead of a maximum likelihood estimator to tackle the problem of identifying the comp... 详细信息
来源: 评论