咨询与建议

限定检索结果

文献类型

  • 136 篇 会议
  • 7 篇 期刊文献
  • 1 册 图书

馆藏范围

  • 144 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 102 篇 工学
    • 68 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 15 篇 信息与通信工程
    • 14 篇 电气工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 机械工程
    • 11 篇 材料科学与工程(可...
    • 11 篇 生物工程
    • 10 篇 光学工程
    • 10 篇 控制科学与工程
    • 8 篇 仪器科学与技术
    • 6 篇 力学(可授工学、理...
    • 6 篇 化学工程与技术
    • 4 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 环境科学与工程(可...
    • 1 篇 动力工程及工程热...
  • 39 篇 理学
    • 18 篇 数学
    • 15 篇 物理学
    • 13 篇 生物学
    • 10 篇 统计学(可授理学、...
    • 5 篇 化学
    • 2 篇 地质学
    • 2 篇 系统科学
  • 14 篇 管理学
    • 9 篇 图书情报与档案管...
    • 6 篇 管理科学与工程(可...
  • 10 篇 医学
    • 10 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 5 篇 药学(可授医学、理...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 31 篇 pattern recognit...
  • 8 篇 local binary pat...
  • 7 篇 image segmentati...
  • 7 篇 face recognition
  • 6 篇 feature extracti...
  • 6 篇 accuracy
  • 5 篇 machine learning
  • 3 篇 neural networks
  • 3 篇 data mining
  • 3 篇 classification a...
  • 2 篇 fuzzy logic
  • 2 篇 support vector m...
  • 2 篇 deep learning
  • 2 篇 pattern recognit...
  • 2 篇 bibliometrics
  • 2 篇 computational ef...
  • 2 篇 companies
  • 2 篇 cc2530
  • 2 篇 discrete wavelet...
  • 2 篇 expert systems

机构

  • 2 篇 univ antonio nar...
  • 2 篇 state grid tianj...
  • 2 篇 state grid tianj...
  • 2 篇 shandong univers...
  • 2 篇 national laborat...
  • 2 篇 pattern recognit...
  • 2 篇 univ antonio nar...
  • 2 篇 department of co...
  • 1 篇 iiit hyderabad h...
  • 1 篇 jilin univ coll ...
  • 1 篇 school of comput...
  • 1 篇 fraunhofer iosb ...
  • 1 篇 east china jiaot...
  • 1 篇 ecole technol su...
  • 1 篇 pattern recognit...
  • 1 篇 universiti tekno...
  • 1 篇 national center ...
  • 1 篇 shandong inst bu...
  • 1 篇 research group f...
  • 1 篇 infn pisa

作者

  • 3 篇 fred ana
  • 2 篇 yen chih-ta
  • 2 篇 abdullah siti no...
  • 2 篇 c. clausner
  • 2 篇 gutierrez r. m.
  • 2 篇 c. papadopoulos
  • 2 篇 manana g.
  • 2 篇 broun c.c.
  • 2 篇 feinen christian
  • 2 篇 ding ing-jr
  • 2 篇 grzegorzek marci...
  • 2 篇 santosh k.c.
  • 2 篇 s. pletschacher
  • 2 篇 cerquera e. a.
  • 2 篇 wang xin
  • 2 篇 campbell w.m.
  • 2 篇 chandra mouli p....
  • 2 篇 a. antonacopoulo...
  • 1 篇 blumenstein mich...
  • 1 篇 takasu atsuhiro

语言

  • 140 篇 英文
  • 4 篇 其他
检索条件"任意字段=2nd International Conference on Pattern Recognition Applications and Methods, ICPRAM 2013"
144 条 记 录,以下是1-10 订阅
排序:
icpram 2013 - Proceedings of the 2nd international conference on pattern recognition applications and methods
ICPRAM 2013 - Proceedings of the 2nd International Conferenc...
收藏 引用
2nd international conference on pattern recognition applications and methods, icpram 2013
The proceedings contain 106 papers. The topics discussed include: improving video-based IRIS recognition via local quality weighted super resolution;keystroke authentication on mobile devices with a capacitive display...
来源: 评论
Pythagorean Fuzzy pattern recognition Model in the Assessment of Social Inclusion Index for Azerbaijan  2nd
Pythagorean Fuzzy Pattern Recognition Model in the Assessmen...
收藏 引用
2nd international conference on Information Technologies and Their applications
作者: Imanov, Gorkhmaz Aliyev, Asif Azerbaijan Republ Inst Control Syst Minist Sci & Educ AZ-1141 Baku Azerbaijan
This paper introduces a novel Pythagorean fuzzy pattern recognition-(PFPR) model for the evaluation of the Social Inclusion Index (SII) in Azerbaijan, a crucial component of the Social Quality framework. The approach ... 详细信息
来源: 评论
applications of discriminative dimensionality reduction
Applications of discriminative dimensionality reduction
收藏 引用
2nd international conference on pattern recognition applications and methods, icpram 2013
作者: Hammer, Barbara Gisbrecht, Andrej Schulz, Alexander CITEC Centre of Excellence Bielefeld University Bielefeld Germany
Discriminative nonlinear dimensionality reduction aims at a visualization of a given set of data such that the information contained in the data points which is of particular relevance for a given class labeling is di... 详细信息
来源: 评论
Page analysis by 2D conditional random fields
Page analysis by 2D conditional random fields
收藏 引用
2nd international conference on pattern recognition applications and methods, icpram 2013
作者: Takasu, Atsuhiro National Institute of Informatics 2-1-2 Hitotsubashi Chiyoda Tokyo Japan
This paper applies two-dimensional conditional random fields (2D CRF) to page analysis and information extraction. In this paper we discuss features and labels for information extraction by 2D CRF. We evaluated the me... 详细信息
来源: 评论
Graph-based shape representation for object retrieval
Graph-based shape representation for object retrieval
收藏 引用
2nd international conference on pattern recognition applications and methods, icpram 2013
作者: Amanpourgharaei, Ali Feinen, Christian Grzegorzek, Marcin Research Group for Pattern Recognition University of Siegen Holderlinstr. 3 Siegen Germany
Shape analysis has been an area of interest and research in image processing for a long time. Developing a discriminant shape representation and description method is a concern in many applications like image retrieva... 详细信息
来源: 评论
pattern recognition applications and methods: international conference, icpram 2013 Barcelona, Spain, February 15-18, 2013 Revised Selected Papers  2
Pattern recognition applications and methods: International ...
收藏 引用
2nd international conference on pattern recognition, icpram 2013
作者: Fred, Ana de Marsico, Maria Instituto de TelecomunicaÇões Instituto Superior Técnico Technical University of Lisbon Lisbon Portugal Department of Computer Science Sapienza University of Rome Roma Italy
来源: 评论
Rotated Local Binary pattern (RLBP): Rotation invariant texture descriptor
Rotated Local Binary Pattern (RLBP): Rotation invariant text...
收藏 引用
2nd international conference on pattern recognition applications and methods, icpram 2013
作者: Mehta, Rakesh Egiazarian, Karen Tampere University of Technology Tampere Finland
In this paper we propose two novel rotation invariant local texture descriptors. They are based on Local Binary pattern (LBP), which is one of the most effective and frequently used texture descriptor. Although LBP ef... 详细信息
来源: 评论
3D model retrieval using density-based silhouette descriptor
3D model retrieval using density-based silhouette descriptor
收藏 引用
2nd international conference on pattern recognition applications and methods, icpram 2013
作者: Tang, Qi Yang, Xin Institute of Image Processing and Pattern Recognition Shanghai Jiao Tong University Shanghai China Key Laboratory of System Control and Information Processing Ministry of Education of China Shanghai 200240 China
In this paper we present a new content-based retrieval descriptor, density-based silhouette descriptor (DBS). It characterizes a 3D object with multivariate probability functions of its 2D silhouette features. The new... 详细信息
来源: 评论
Application of edge and line detection to detect the near surface anomalies in potential data
Application of edge and line detection to detect the near su...
收藏 引用
2nd international conference on pattern recognition applications and methods, icpram 2013
作者: Třísková, Lenka Kosková Novák, Josef Institute of Novel Technologies and Applied Informatics Technical University in Liberec Studentská 2 Liberec Czech Republic
Presented paper is focused on fast near surface anomaly detection in potential data. Our aim is to find fast and semi-automated anomaly detection technique for the near surface anomalies with defined geometry. The pro... 详细信息
来源: 评论
Declarative gesture spotting using inferred and refined control points
Declarative gesture spotting using inferred and refined cont...
收藏 引用
2nd international conference on pattern recognition applications and methods, icpram 2013
作者: Hoste, Lode De Rooms, Brecht Signer, Beat Web and Information Systems Engineering Lab. Vrije Universiteit Brussel Pleinlaan 2 1050 Brussels Belgium
We propose a novel gesture spotting approach that offers a comprehensible representation of automatically inferred spatiotemporal constraints. These constraints can be defined between a number of characteristic contro... 详细信息
来源: 评论