咨询与建议

限定检索结果

文献类型

  • 3 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 2 篇 软件工程

主题

  • 1 篇 graph neural net...
  • 1 篇 semantics

机构

  • 1 篇 lisn université ...
  • 1 篇 surromind korea ...
  • 1 篇 seoul national u...
  • 1 篇 ls2n umr cnrs 60...

作者

  • 1 篇 heo yu-jung
  • 1 篇 morin emmanuel
  • 1 篇 punitan dharani
  • 1 篇 zhang byoung-tak
  • 1 篇 hamon thierry
  • 1 篇 choi woo suk
  • 1 篇 bouhandi merieme

语言

  • 3 篇 英文
检索条件"任意字段=2nd Workshop on Deep Learning on Graphs for Natural Language Processing, DLG4NLP 2022"
3 条 记 录,以下是1-10 订阅
排序:
dlg4nlp 2022 - 2nd workshop on deep learning on graphs for natural language processing, Proceedings of the workshop
DLG4NLP 2022 - 2nd Workshop on Deep Learning on Graphs for N...
收藏 引用
2nd workshop on deep learning on graphs for natural language processing, dlg4nlp 2022
The proceedings contain 8 papers. The topics discussed include: diversifying content generation for commonsense reasoning with mixture of knowledge graph experts;improving neural machine translation with the abstract ...
来源: 评论
Graph Neural Networks for Adapting Off-the-shelf General Domain language Models to Low-Resource Specialised Domains  2
Graph Neural Networks for Adapting Off-the-shelf General Dom...
收藏 引用
2nd workshop on deep learning on graphs for natural language processing, dlg4nlp 2022
作者: Bouhandi, Merieme Morin, Emmanuel Hamon, Thierry LS2N UMR CNRS 6004 Nantes Université Nantes France LISN Université Paris-Saclay Université Sorbonne Paris Nord France
language models encode linguistic proprieties and are used as input for more specific models. Using their word representations as-is for specialised and low-resource domains might be less efficient. Methods of adaptin... 详细信息
来源: 评论
Scene Graph Parsing via Abstract Meaning Representation in Pre-trained language Models  2
Scene Graph Parsing via Abstract Meaning Representation in P...
收藏 引用
2nd workshop on deep learning on graphs for natural language processing, dlg4nlp 2022
作者: Choi, Woo Suk Heo, Yu-Jung Punitan, Dharani Zhang, Byoung-Tak Seoul National University Korea Republic of Seoul National University Korea Republic of Surromind Korea Republic of
In this work, we propose the application of abstract meaning representation (AMR) based semantic parsing models to parse textual descriptions of a visual scene into scene graphs, which is the first work to the best of... 详细信息
来源: 评论