咨询与建议

限定检索结果

文献类型

  • 341 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 343 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 337 篇 工学
    • 327 篇 计算机科学与技术...
    • 262 篇 电气工程
    • 256 篇 机械工程
    • 8 篇 软件工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 2 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 生物工程
  • 6 篇 理学
    • 3 篇 系统科学
    • 2 篇 物理学
    • 1 篇 数学
    • 1 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 6 篇 医学
    • 6 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 141 篇 computer vision
  • 73 篇 images
  • 63 篇 training
  • 53 篇 estimation
  • 50 篇 visualization
  • 45 篇 modulation
  • 45 篇 filtration
  • 45 篇 field programmab...
  • 44 篇 ofdm
  • 44 篇 signal processin...
  • 44 篇 clocks
  • 36 篇 computer archite...
  • 36 篇 semantics
  • 30 篇 feature extracti...
  • 28 篇 computational mo...
  • 24 篇 neural networks
  • 23 篇 cameras
  • 21 篇 recognition (psy...
  • 21 篇 videotapes
  • 20 篇 dataset

机构

  • 12 篇 carnegie mellon ...
  • 11 篇 univ chinese aca...
  • 8 篇 stanford univ st...
  • 6 篇 australian natl ...
  • 5 篇 univ sci & techn...
  • 5 篇 mit cambridge ma...
  • 5 篇 kaust thuwal
  • 5 篇 chinese acad sci...
  • 5 篇 univ calif berke...
  • 4 篇 facebook ai res ...
  • 4 篇 boston univ bost...
  • 4 篇 univ sydney nsw
  • 4 篇 sun yat sen univ...
  • 4 篇 natl univ singap...
  • 4 篇 deepmind england
  • 4 篇 univ washington ...
  • 4 篇 microsoft res pe...
  • 4 篇 max planck inst ...
  • 3 篇 ist austria klos...
  • 3 篇 univ toronto on

作者

  • 5 篇 ghanem bernard
  • 5 篇 zafeiriou stefan...
  • 4 篇 darrell trevor
  • 4 篇 lin liang
  • 4 篇 schiele bernt
  • 4 篇 ramanan deva
  • 3 篇 swoboda paul
  • 3 篇 busch christoph
  • 3 篇 van gool luc
  • 3 篇 murino vittorio
  • 3 篇 fritz mario
  • 3 篇 feng jiashi
  • 3 篇 gupta abhinav
  • 3 篇 deng weihong
  • 3 篇 torr philip h. s...
  • 3 篇 pollefeys marc
  • 3 篇 leibe bastian
  • 3 篇 liu li
  • 3 篇 shao ling
  • 3 篇 mei tao

语言

  • 339 篇 英文
  • 2 篇 日文
  • 1 篇 其他
  • 1 篇 中文
检索条件"任意字段=30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017"
343 条 记 录,以下是31-40 订阅
Spatiotemporal Multiplier Networks for Video Action recognition  30
Spatiotemporal Multiplier Networks for Video Action Recognit...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Feichtenhofer, Christoph Pinz, Axel Wildes, Richard P. Graz Univ Technol Graz Austria York Univ Toronto ON Canada
this paper presents a general ConvNet architecture for video action recognition based on multiplicative interactions of spacetime features. Our model combines the appearance and motion pathways of a two-stream archite... 详细信息
来源: 评论
SCC: Semantic Context Cascade for Efficient Action Detection  30
SCC: Semantic Context Cascade for Efficient Action Detection
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Heilbron, Fabian Caba Barrios, Wayner Escorcia, Victor Ghanem, Bernard KAUST Thuwal Saudi Arabia
Despite the recent advances in large-scale video analysis, action detection remains as one of the most challenging unsolved problems in computer vision. this snag is in part due to the large volume of data that needs ... 详细信息
来源: 评论
DOPE: Distributed Optimization for Pairwise Energies  30
DOPE: Distributed Optimization for Pairwise Energies
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Dolz, Jose Ben Ayed, Ismail Desrosiers, Christian Ecole Technol Super Lab Imagery Vis & Artificial Intelligence Montreal PQ Canada
We formulate an Alternating Direction Method of Multipliers (ADMM) that systematically distributes the computations of any technique for optimizing pairwise functions, including non-submodular potentials. Such discret... 详细信息
来源: 评论
the More You Know: Using Knowledge Graphs for Image Classification  30
The More You Know: Using Knowledge Graphs for Image Classifi...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Marino, Kenneth Salakhutdinov, Ruslan Gupta, Abhinav Carnegie Mellon Univ 5000 Forbes Ave Pittsburgh PA 15213 USA
One characteristic that sets humans apart from modern learning-based computer vision algorithms is the ability to acquire knowledge about the world and use that knowledge to reason about the visual world. Humans can l... 详细信息
来源: 评论
Efficient Global Point Cloud Alignment using Bayesian Nonparametric Mixtures  30
Efficient Global Point Cloud Alignment using Bayesian Nonpar...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Straub, Julian Campbell, Trevor How, Jonathan P. Fisher, John W., III MIT Cambridge MA 02139 USA
Point cloud alignment is a common problem in computer vision and robotics, with applications ranging from 3D object recognition to reconstruction. We propose a novel approach to the alignment problem that utilizes Bay... 详细信息
来源: 评论
Controlling Perceptual Factors in Neural Style Transfer  30
Controlling Perceptual Factors in Neural Style Transfer
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gatys, Leon A. Ecker, Alexander S. Bethge, Matthias Hertzmann, Aaron Shechtman, Eli Univ Tubingen Tubingen Germany Adobe Res San Francisco CA USA
Neural Style Transfer has shown very exciting results enabling new forms of image manipulation. Here we extend the existing method to introduce control over spatial location, colour information and across spatial scal... 详细信息
来源: 评论
Tracking by Natural Language Specification  30
Tracking by Natural Language Specification
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Zhenyang Tao, Ran Gavves, Efstratios Snoek, Cees G. M. Smeulders, Arnold W. M. Univ Amsterdam QUVA Lab Amsterdam Netherlands
this paper strives to track a target object in a video. Rather than specifying the target in the first frame of a video by a bounding box, we propose to track the object based on a natural language specification of th... 详细信息
来源: 评论
Why You Should Forget Luminance Conversion and Do Something Better  30
Why You Should Forget Luminance Conversion and Do Something ...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Nguyen, Rang M. H. Brown, Michael S. Natl Univ Singapore Singapore Singapore York Univ N York ON Canada
One of the most frequently applied low-level operations in computer vision is the conversion of an RGB camera image into its luminance representation. this is also one of the most incorrectly applied operations. Even ... 详细信息
来源: 评论
Scale-Aware Face Detection  30
Scale-Aware Face Detection
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hao, Zekun Liu, Yu Qin, Hongwei Yan, Junjie Li, Xiu Hu, Xiaolin SenseTime Beijing Peoples R China Tsinghua Univ Beijing Peoples R China
Convolutional neural network (CNN) based face detectors are inefficient in handling faces of diverse scales. they rely on either fitting a large single model to faces across a large scale range or multi-scale testing.... 详细信息
来源: 评论
Nonnegative Matrix Underapproximation for Robust Multiple Model Fitting  30
Nonnegative Matrix <i>Underapproximation</i> for Robust Mult...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tepper, Mariano Sapiro, Guillermo Simons Fdn Flatiron Inst New York NY 10010 USA Duke Univ ECE Durham NC 27706 USA Duke Univ Durham NC 27706 USA
In this work, we introduce a highly efficient algorithm to address the nonnegative matrix underapproximation (NMU) problem, i.e., nonnegative matrix factorization (NMF) with an additional underapproximation constraint... 详细信息
来源: 评论