咨询与建议

限定检索结果

文献类型

  • 212 篇 会议

馆藏范围

  • 212 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 209 篇 计算机科学与技术...
    • 186 篇 电气工程
    • 169 篇 机械工程
    • 3 篇 软件工程
    • 2 篇 光学工程
    • 2 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
  • 3 篇 理学
    • 2 篇 物理学
    • 1 篇 生物学
    • 1 篇 系统科学

主题

  • 131 篇 computer vision
  • 68 篇 images
  • 45 篇 training
  • 36 篇 visualization
  • 32 篇 computer archite...
  • 25 篇 semantics
  • 24 篇 computational mo...
  • 24 篇 estimation
  • 18 篇 neural networks
  • 18 篇 feature extracti...
  • 16 篇 three-dimensiona...
  • 16 篇 image segmentati...
  • 16 篇 optimization
  • 16 篇 modulation
  • 16 篇 filtration
  • 15 篇 pattern recognit...
  • 15 篇 dataset
  • 15 篇 ofdm
  • 15 篇 signal processin...
  • 15 篇 clocks

机构

  • 9 篇 univ chinese aca...
  • 6 篇 carnegie mellon ...
  • 5 篇 mit cambridge ma...
  • 5 篇 kaust thuwal
  • 5 篇 chinese acad sci...
  • 5 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 4 篇 univ calif berke...
  • 4 篇 max planck inst ...
  • 3 篇 ist austria klos...
  • 3 篇 chinese acad sci...
  • 3 篇 univ sci & techn...
  • 3 篇 peking univ inst...
  • 3 篇 ist italiano tec...
  • 3 篇 australian natl ...
  • 3 篇 univ sydney nsw
  • 3 篇 tech univ dresde...
  • 3 篇 adobe res san jo...
  • 3 篇 swiss fed inst t...
  • 2 篇 natl res univ hi...

作者

  • 4 篇 ghanem bernard
  • 4 篇 schiele bernt
  • 3 篇 swoboda paul
  • 3 篇 murino vittorio
  • 3 篇 fritz mario
  • 3 篇 feng jiashi
  • 3 篇 pollefeys marc
  • 3 篇 rother carsten
  • 2 篇 xue jia
  • 2 篇 komodakis nikos
  • 2 篇 andres bjoern
  • 2 篇 busch christoph
  • 2 篇 agustsson eiriku...
  • 2 篇 singh vikas
  • 2 篇 beksi william j.
  • 2 篇 wang liang
  • 2 篇 darrell trevor
  • 2 篇 dana kristin
  • 2 篇 huang yan
  • 2 篇 rivadeneira rafa...

语言

  • 211 篇 英文
  • 1 篇 日文
检索条件"任意字段=30th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2017"
212 条 记 录,以下是151-160 订阅
排序:
Convolutional neural network architecture for geometric matching  30
Convolutional neural network architecture for geometric matc...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Rocco, Ignacio Arandjelovic, Relja Sivic, Josef DI ENS Paris France INRIA Villeneuve Dascq France CIIRC Prague Czech Republic PSL Res Univ ENS Dept Informat CNRS F-75005 Paris France Czech Tech Univ Czech Inst Informat Robot & Cybernet Prague Czech Republic DeepMind London England
We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. the contributions of t... 详细信息
来源: 评论
SPFTN: A Self-Paced Fine-Tuning Network for Segmenting Objects in Weakly Labelled Videos  30
SPFTN: A Self-Paced Fine-Tuning Network for Segmenting Objec...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Dingwen Yang, Le Meng, Deyu Xu, Dong Han, Junwei Northwestern Polytechincal Univ Xian Shaanxi Peoples R China Xi An Jiao Tong Univ Xian Shaanxi Peoples R China Univ Sydney Sydney NSW Australia
Object segmentation in weakly labelled videos is an interesting yet challenging task, which aims at learning to perform category-specific video object segmentation by only using video-level tags. Existing works in thi... 详细信息
来源: 评论
DeshadowNet: A Multi-context Embedding Deep Network for Shadow Removal  30
DeshadowNet: A Multi-context Embedding Deep Network for Shad...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Qu, Liangqiong Tian, Jiandong He, Shengfeng Tang, Yandong Lau, Rynson W. H. Chinese Acad Sci Shenyang Inst Automat State Key Lab Robot Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China City Univ Hong Kong Hong Kong Hong Kong Peoples R China South China Univ Technol Guangzhou Guangdong Peoples R China
Shadow removal is a challenging task as it requires the detection/annotation of shadows as well as semantic understanding of the scene. In this paper, we propose an automatic and end-to-end deep neural network (Deshad... 详细信息
来源: 评论
What Is the Space of Attenuation Coefficients in Underwater computer vision?  30
What Is the Space of Attenuation Coefficients in Underwater ...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Akkaynak, Derya Treibitz, Tali Shlesinger, Tom Tamir, Raz Loya, Yossi Iluz, David Univ Haifa Haifa Israel Interuniv Inst Marine Sci Elat Israel Tel Aviv Univ Tel Aviv Israel Bar Ilan Univ Ramat Gan Israel
Underwater image reconstruction methods require the knowledge of wideband attenuation coefficients per color channel. Current estimation methods for these coefficients require specialized hardware or multiple images, ... 详细信息
来源: 评论
Learning Detailed Face Reconstruction from a Single Image  30
Learning Detailed Face Reconstruction from a Single Image
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Richardson, Elad Sela, Matan Or-El, Roy Kimmel, Ron Technion Israel Inst Technol Dept Comp Sci Haifa Israel Univ Washington Dept Comp Sci & Engn Seattle WA 98195 USA
Reconstructing the detailed geometric structure of a face from a given image is a key to many computer vision and graphics applications, such as motion capture and reenactment. the reconstruction task is challenging a... 详细信息
来源: 评论
Dynamic Facial Analysis: From Bayesian Filtering to Recurrent Neural Network  30
Dynamic Facial Analysis: From Bayesian Filtering to Recurren...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Gu, Jinwei Yang, Xiaodong De Mello, Shalini Kautz, Jan NVIDIA Santa Clara CA 95051 USA
Facial analysis in videos, including head pose estimation and facial landmark localization, is key for many applications such as facial animation capture, human activity recognition, and human-computer interaction. In... 详细信息
来源: 评论
Object-aware Dense Semantic Correspondence  30
Object-aware Dense Semantic Correspondence
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Yang, Fan Li, Xin Cheng, Hong Li, Jianping Chen, Leiting UESTC Sch Comp Sci & Engn Chengdu Sichuan Peoples R China UESTC Sch Automat Engn Ctr Robot Chengdu Sichuan Peoples R China
this work aims to build pixel-to-pixel correspondences between images from the same visual class but with different geometries and visual similarities. this task is particularly challenging because (i) their visual co... 详细信息
来源: 评论
Switching Convolutional Neural Network for Crowd Counting  30
Switching Convolutional Neural Network for Crowd Counting
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sam, Deepak Babu Surya, Shiv Babu, R. Venkatesh Indian Inst Sci Bangalore 560012 Karnataka India
We propose a novel crowd counting model that maps a given crowd scene to its density. Crowd analysis is compounded by myriad of factors like inter-occlusion between people due to extreme crowding, high similarity of a... 详细信息
来源: 评论
Robust Joint and Individual Variance Explained  30
Robust Joint and Individual Variance Explained
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sagonas, Christos Panagakis, Yannis Leidinger, Alina Zafeiriou, Stefanos Imperial Coll London London England Onfido London England Middlesex Univ London London England
Discovering the common (joint) and individual sub-spaces is crucial for analysis of multiple data sets, including multi-view and multi-modal data. Several statistical machine learning methods have been developed for d... 详细信息
来源: 评论
Re-ranking Person Re-identification with k-reciprocal Encoding  30
Re-ranking Person Re-identification with <i>k</i>-reciprocal...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhong, Zhun Zheng, Liang Cao, Donglin Li, Shaozi Xiamen Univ Cognit Sci Dept Xiamen Peoples R China Univ Technol Sydney Sydney NSW Australia Xiamen Univ Fujian Key Lab Brain Inspired Comp Tech & Applica Xiamen Peoples R China
When considering person re-identification (re-ID) as a retrieval process, re-ranking is a critical step to improve its accuracy. Yet in the re-ID community, limited effort has been devoted to re-ranking, especially th... 详细信息
来源: 评论