咨询与建议

限定检索结果

文献类型

  • 212 篇 会议

馆藏范围

  • 212 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 209 篇 工学
    • 209 篇 计算机科学与技术...
    • 186 篇 电气工程
    • 169 篇 机械工程
    • 3 篇 软件工程
    • 2 篇 光学工程
    • 2 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
  • 3 篇 理学
    • 2 篇 物理学
    • 1 篇 生物学
    • 1 篇 系统科学

主题

  • 131 篇 computer vision
  • 68 篇 images
  • 45 篇 training
  • 36 篇 visualization
  • 32 篇 computer archite...
  • 25 篇 semantics
  • 24 篇 computational mo...
  • 24 篇 estimation
  • 18 篇 neural networks
  • 18 篇 feature extracti...
  • 16 篇 three-dimensiona...
  • 16 篇 image segmentati...
  • 16 篇 optimization
  • 16 篇 modulation
  • 16 篇 filtration
  • 15 篇 pattern recognit...
  • 15 篇 dataset
  • 15 篇 ofdm
  • 15 篇 signal processin...
  • 15 篇 clocks

机构

  • 9 篇 univ chinese aca...
  • 6 篇 carnegie mellon ...
  • 5 篇 mit cambridge ma...
  • 5 篇 kaust thuwal
  • 5 篇 chinese acad sci...
  • 5 篇 stanford univ st...
  • 4 篇 natl univ singap...
  • 4 篇 univ calif berke...
  • 4 篇 max planck inst ...
  • 3 篇 ist austria klos...
  • 3 篇 chinese acad sci...
  • 3 篇 univ sci & techn...
  • 3 篇 peking univ inst...
  • 3 篇 ist italiano tec...
  • 3 篇 australian natl ...
  • 3 篇 univ sydney nsw
  • 3 篇 tech univ dresde...
  • 3 篇 adobe res san jo...
  • 3 篇 swiss fed inst t...
  • 2 篇 natl res univ hi...

作者

  • 4 篇 ghanem bernard
  • 4 篇 schiele bernt
  • 3 篇 swoboda paul
  • 3 篇 murino vittorio
  • 3 篇 fritz mario
  • 3 篇 feng jiashi
  • 3 篇 pollefeys marc
  • 3 篇 rother carsten
  • 2 篇 xue jia
  • 2 篇 komodakis nikos
  • 2 篇 andres bjoern
  • 2 篇 busch christoph
  • 2 篇 agustsson eiriku...
  • 2 篇 singh vikas
  • 2 篇 beksi william j.
  • 2 篇 wang liang
  • 2 篇 darrell trevor
  • 2 篇 dana kristin
  • 2 篇 huang yan
  • 2 篇 rivadeneira rafa...

语言

  • 211 篇 英文
  • 1 篇 日文
检索条件"任意字段=30th IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2017"
212 条 记 录,以下是161-170 订阅
排序:
Temporal Action Co-segmentation in 3D Motion Capture Data and Videos  30
Temporal Action Co-segmentation in 3D Motion Capture Data an...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Papoutsakis, Konstantinos Panagiotakis, Costas Argyros, Antonis A. FORTH Inst Comp Sci Computat Vis & Robot Lab Iraklion Greece Univ Crete Dept Comp Sci Rethimnon Greece TEI Crete Business Adm Dept Agios Nikolaos Iraklion Greece
Given two action sequences, we are interested in spotting/co-segmenting all pairs of sub-sequences that represent the same action. We propose a totally unsupervised solution to this problem. No a-priori model of the a... 详细信息
来源: 评论
Noisy Softmax: Improving the Generalization Ability of DCNN via Postponing the Early Softmax Saturation  30
Noisy Softmax: Improving the Generalization Ability of DCNN ...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Binghui Deng, Weihong Du, Junping Beijing Univ Posts & Telecommun Sch Informat & Commun Engn Beijing Peoples R China Beijing Univ Posts & Telecommun Sch Comp Sci Beijing Peoples R China
Over the past few years, softmax and SGD have become a commonly used component and the default training strategy in CNN frameworks, respectively. However, when optimizing CNNs with SGD, the saturation behavior behind ... 详细信息
来源: 评论
Weakly Supervised Dense Video Captioning  30
Weakly Supervised Dense Video Captioning
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Shen, Zhiqiang Li, Jianguo Su, Zhou Li, Minjun Chen, Yurong Jiang, Yu-Gang Xue, Xiangyang Fudan Univ Sch Comp Sci Shanghai Key Lab Intelligent Informat Proc Shanghai Peoples R China Intel Labs China Beijing Peoples R China
this paper focuses on a novel and challenging vision task, dense video captioning, which aims to automatically describe a video clip with multiple informative and diverse caption sentences. the proposed method is trai... 详细信息
来源: 评论
Deep Hashing Network for Unsupervised Domain Adaptation  30
Deep Hashing Network for Unsupervised Domain Adaptation
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Venkateswara, Hemanth Eusebio, Jose Chakraborty, Shayok Panchanathan, Sethuraman Arizona State Univ Ctr Cognit Ubiquitous Comp Tempe AZ 85287 USA
In recent years, deep neural networks have emerged as a dominant machine learning tool for a wide variety of application domains. However, training a deep neural network requires a large amount of labeled data, which ... 详细信息
来源: 评论
Query-Focused Video Summarization: Dataset, Evaluation, and A Memory Network Based Approach  30
Query-Focused Video Summarization: Dataset, Evaluation, and ...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sharghi, Aidean Laurel, Jacob S. Gong, Boqing Univ Cent Florida Ctr Res Comp Vis Orlando FL 32816 USA Univ Alabama Birmingham Dept Comp Sci Birmingham AL 35294 USA
Recent years have witnessed a resurgence of interest in video summarization. However, one of the main obstacles to the research on video summarization is the user subjectivity - users have various preferences over the... 详细信息
来源: 评论
Deep Learning Human Mind for Automated Visual Classification  30
Deep Learning Human Mind for Automated Visual Classification
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Spampinato, C. Palazzo, S. Kavasidis, I. Giordano, D. Souly, N. Shah, M. Dept Elect Elect & Comp Engn PeRCeiVe Lab Viale Andrea Doria 6 I-95125 Catania Italy Univ Cent Florida Ctr Res Comp Vis 4328 Scorpius StHEC 245D Orlando FL 32816 USA
What if we could effectively read the mind and transfer human visual capabilities to computer vision methods? In this paper, we aim at addressing this question by developing the first visual object classifier driven b... 详细信息
来源: 评论
LCR-Net: Localization-Classification-Regression for Human Pose  30
LCR-Net: Localization-Classification-Regression for Human Po...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Rogez, Gregory Weinzaepfel, Philippe Schmid, Cordelia INRIA Villeneuve Dascq France Xerox Res Ctr Europe Grenoble France
We propose an end-to-end architecture for joint 2D and 3D human pose estimation in natural images. Key to our approach is the generation and scoring of a number of pose proposals per image, which allows us to predict ... 详细信息
来源: 评论
On-the-Fly Adaptation of Regression Forests for Online Camera Relocalisation  30th
On-the-Fly Adaptation of Regression Forests for Online Camer...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cavallari, Tommaso Golodetz, Stuart Lord, Nicholas A. Valentin, Julien Di Stefano, Luigi Torr, Philip H. S. Univ Bologna Dept Comp Sci & Engn Bologna Italy Univ Oxford Dept Engn Sci Oxford England Perceptiveio Inc San Jose CA USA
Camera relocalisation is an important problem in computer vision, with applications in simultaneous localisation and mapping, virtual/augmented reality and navigation. Common techniques either match the current image ... 详细信息
来源: 评论
Learning Object Interactions and Descriptions for Semantic Image Segmentation  30
Learning Object Interactions and Descriptions for Semantic I...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Guangrun Luo, Ping Lin, Liang Wang, Xiaogang Sun Yat Sen Univ Guangzhou Guangdong Peoples R China Chinese Univ Hong Kong Shatin Hong Kong Peoples R China SenseTime Grp Ltd Hong Kong Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Key Lab Comp Vis & Pat Rec Beijing Peoples R China
Recent advanced deep convolutional networks (CNNs) achieved great successes in many computer vision tasks, because of their compelling learning complexity and the presences of large-scale labeled data. However, as obt... 详细信息
来源: 评论
Consensus Maximization with Linear Matrix Inequality Constraints  30
Consensus Maximization with Linear Matrix Inequality Constra...
收藏 引用
30th ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Speciale, Pablo Paudel, Danda P. Oswald, Martin R. Kroeger, Till Gool, Luc V. Pollefeys, Marc Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Swiss Fed Inst Technol D ITET Comp Vis Lab Zurich Switzerland Microsoft Corp Redmond WA 98052 USA Katholieke Univ Leuven ESAT PSI VISICS Leuven Belgium
Consensus maximization has proven to be a useful tool for robust estimation. While randomized methods like RANSAC are fast, they do not guarantee global optimality and fail to manage large amounts of outliers. On the ... 详细信息
来源: 评论