咨询与建议

限定检索结果

文献类型

  • 61 篇 会议

馆藏范围

  • 61 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 59 篇 计算机科学与技术...
    • 57 篇 电气工程
    • 2 篇 软件工程
    • 1 篇 生物工程
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 生物学
    • 1 篇 统计学(可授理学、...

主题

  • 15 篇 deep learning
  • 6 篇 machine learning
  • 4 篇 signal processin...
  • 4 篇 training
  • 3 篇 dimensionality r...
  • 3 篇 neural networks
  • 3 篇 speech enhanceme...
  • 3 篇 cnn
  • 2 篇 learning systems
  • 2 篇 representation l...
  • 2 篇 scalability
  • 2 篇 reinforcement le...
  • 2 篇 generalization
  • 2 篇 training data
  • 2 篇 anomaly detectio...
  • 2 篇 graph signal pro...
  • 2 篇 semi-supervised ...
  • 2 篇 information theo...
  • 2 篇 information bott...
  • 2 篇 multitask learni...

机构

  • 2 篇 univ ind santand...
  • 2 篇 univ idaho dept ...
  • 2 篇 yale univ dept g...
  • 2 篇 natl tsing hua u...
  • 2 篇 mila quebec ai i...
  • 2 篇 middle east tech...
  • 2 篇 univ montreal de...
  • 2 篇 yale univ dept c...
  • 2 篇 kings coll londo...
  • 1 篇 csiro astron & s...
  • 1 篇 univ lyon insa l...
  • 1 篇 new york univers...
  • 1 篇 politecn milan m...
  • 1 篇 univ michigan an...
  • 1 篇 univ calif davis...
  • 1 篇 yale univ dept e...
  • 1 篇 friedrich alexan...
  • 1 篇 oticon as dk-276...
  • 1 篇 new york univers...
  • 1 篇 johns hopkins un...

作者

  • 2 篇 tong alexander
  • 2 篇 vural elif
  • 2 篇 simeone osvaldo
  • 2 篇 krishnaswamy smi...
  • 2 篇 xian min
  • 2 篇 jose sharu there...
  • 2 篇 wolf guy
  • 2 篇 arguello henry
  • 2 篇 pei mingtao
  • 2 篇 vakanski aleksan...
  • 2 篇 tan zheng-hua
  • 1 篇 santra a.
  • 1 篇 kalogerias diony...
  • 1 篇 lyu zhaoyan
  • 1 篇 roh si-dong
  • 1 篇 zhang boyu
  • 1 篇 mandayam narayan...
  • 1 篇 yang ming-hsun
  • 1 篇 gramaccioni ricc...
  • 1 篇 andersen lars no...

语言

  • 60 篇 英文
  • 1 篇 其他
检索条件"任意字段=31st IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2021"
61 条 记 录,以下是1-10 订阅
排序:
2021 ieee 31st international workshop on machine learning for signal processing, mlsp 2021
2021 IEEE 31st International Workshop on Machine Learning fo...
收藏 引用
31st ieee international workshop on machine learning for signal processing, mlsp 2021
The proceedings contain 98 papers. The topics discussed include: hierarchical graph neural nets can capture long-range interactions;self-attention for audio super-resolution;deep complex convolutional recurrent networ...
来源: 评论
ADAPTIVE NORMALIZED LMP EstIMATION FOR GRAPH signal processing  31
ADAPTIVE NORMALIZED LMP ESTIMATION FOR GRAPH SIGNAL PROCESSI...
收藏 引用
ieee 31st international workshop on machine learning for signal processing (mlsp)
作者: Yan, Yi Adel, Radwa Kuruoglu, Ercan E. Tsinghua Univ Tsinghua Berkeley Shenzhen Inst Shenzhen Peoples R China
We propose an adaptive normalized least mean pth power (GNLMP) algorithm for graph signal processing (GSP), which estimates sampled graph signals under impulsive noise. Compared to the recently introduced adaptive GSP... 详细信息
来源: 评论
BEYOND THE BIAS VARIANCE TRADE-OFF: A MUTUAL INFORMATION TRADE-OFF IN DEEP learning  31
BEYOND THE BIAS VARIANCE TRADE-OFF: A MUTUAL INFORMATION TRA...
收藏 引用
ieee 31st international workshop on machine learning for signal processing (mlsp)
作者: Lan, Xinjie Zhu, Bin Boncelet, Charles Barner, Kenneth Univ Delaware Dept Elect & Comp Engn Newark DE 19711 USA
The classical bias variance trade-off cannot accurately explain how over-parameterized Deep Neural Networks (DNNs) avoid overfitting and achieve good generalization. To address the problem, we alternatively derive a M... 详细信息
来源: 评论
A UNIFIED PAC-BAYESIAN FRAMEWORK FOR machine UNlearning VIA INFORMATION RISK MINIMIZATION  31
A UNIFIED PAC-BAYESIAN FRAMEWORK FOR MACHINE UNLEARNING VIA ...
收藏 引用
ieee 31st international workshop on machine learning for signal processing (mlsp)
作者: Jose, Sharu Theresa Simeone, Osvaldo Kings Coll London Dept Engn Kings Commun Learning & Informat Proc KCLIP Lab London WC2R 2LS England
machine unlearning refers to mechanisms that can remove the influence of a subset of training data upon request from a trained model without incurring the cost of re-training from scratch. This paper develops a unifie... 详细信息
来源: 评论
ZERO-SHOT MOTION PATTERN RECOGNITION FROM 4D POINT-CLOUDS  31
ZERO-SHOT MOTION PATTERN RECOGNITION FROM 4D POINT-CLOUDS
收藏 引用
ieee 31st international workshop on machine learning for signal processing (mlsp)
作者: Salami, Dariush Sigg, stephan Aalto Univ Dept Commun & Networking Espoo 02150 Finland
We address a timely and relevant problem in signal processing: The recognition of patterns from spatial data in motion through a zero-shot learning scenario. We introduce a neural network architecture based on Siamese... 详细信息
来源: 评论
DEEP LOW-DIMENSIONAL SPECTRAL IMAGE REPRESENTATION FOR COMPRESSIVE SPECTRAL RECONstRUCTION  31
DEEP LOW-DIMENSIONAL SPECTRAL IMAGE REPRESENTATION FOR COMPR...
收藏 引用
ieee 31st international workshop on machine learning for signal processing (mlsp)
作者: Monroy, Brayan Bacca, Jorge Arguello, Henry Univ Ind Santander Dept Comp Sci Bucaramanga 680002 Colombia
Model-based deep learning techniques are the state-of-the-art in compressive spectral imaging reconstruction. These methods integrate deep neural networks (DNN) as spectral image representation used as prior informati... 详细信息
来源: 评论
AFFINITY MIXUP FOR WEAKLY SUPERVISED SOUND EVENT DETECTION  31
AFFINITY MIXUP FOR WEAKLY SUPERVISED SOUND EVENT DETECTION
收藏 引用
ieee 31st international workshop on machine learning for signal processing (mlsp)
作者: Izadi, Mohammad Rasool stevenson, Robert Kloepper, Laura Univ Notre Dame Notre Dame IN 46556 USA St Marys Coll Notre Dame IN 46556 USA
The weakly supervised sound event detection (WSSED) problem is the task of predicting the presence of sound events and their corresponding starting and ending points in a weakly labeled dataset. A weak dataset associa... 详细信息
来源: 评论
A CONstRAINED LINEARLY INVOLVED GENERALIZED MOREAU ENHANCED MODEL AND ITS PROXIMAL SPLITTING ALGORITHM  31
A CONSTRAINED LINEARLY INVOLVED GENERALIZED MOREAU ENHANCED ...
收藏 引用
ieee 31st international workshop on machine learning for signal processing (mlsp)
作者: Yata, Wataru Yamagishi, Masao Yamada, Isao Tokyo Inst Technol Tokyo Japan
In this paper, we propose a constrained LiGME (cLiGME) model by incorporating newly multiple convex constraints into the LiGME (Linearly involved Generalized Moreau Enhanced) model which was established recently for m... 详细信息
来源: 评论
PRIVACY ASSESSMENT OF FEDERATED learning USING PRIVATE PERSONALIZED LAYERS  31
PRIVACY ASSESSMENT OF FEDERATED LEARNING USING PRIVATE PERSO...
收藏 引用
ieee 31st international workshop on machine learning for signal processing (mlsp)
作者: Jourdan, Theo Boutet, Antoine Frindel, Carole Univ Lyon INSA Lyon CREATIS Lyon France Univ Lyon INSA Lyon INRIA CITI Lyon France
Federated learning (FL) is a collaborative scheme to train a learning model across multiple participants without sharing data. While FL is a clear step forward towards enforcing users' privacy, different inference... 详细信息
来源: 评论
learning-BASED UE CLASSIFICATION IN MILLIMETER-WAVE CELLULAR SYstEMS WITH MOBILITY  31
LEARNING-BASED UE CLASSIFICATION IN MILLIMETER-WAVE CELLULAR...
收藏 引用
ieee 31st international workshop on machine learning for signal processing (mlsp)
作者: Pjanic, Dino Sopasakis, Alexandros Tataria, Harsh Tufvesson, Fredrik Reial, Andres Ericsson AB Lund Sweden Lund Univ Dept Elect & Informat Technol Lund Sweden Lund Univ Dept Math Lund Sweden
Millimeter-wave cellular communication requires beamforming procedures that enable alignment of the transmitter and receiver beams as the user equipment (UE) moves. For efficient beam tracking it is advantageous to cl... 详细信息
来源: 评论