咨询与建议

限定检索结果

文献类型

  • 320 篇 会议

馆藏范围

  • 320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 318 篇 计算机科学与技术...
    • 199 篇 控制科学与工程
    • 78 篇 机械工程
    • 3 篇 软件工程
    • 2 篇 光学工程
    • 1 篇 生物工程
  • 200 篇 理学
    • 199 篇 系统科学
    • 2 篇 物理学
    • 1 篇 生物学

主题

  • 135 篇 task analysis
  • 122 篇 computer vision
  • 122 篇 training
  • 90 篇 computer archite...
  • 89 篇 feature extracti...
  • 77 篇 visualization
  • 55 篇 three-dimensiona...
  • 55 篇 computational mo...
  • 45 篇 neural networks
  • 41 篇 semantics
  • 35 篇 cameras
  • 29 篇 image segmentati...
  • 29 篇 convolution
  • 27 篇 face
  • 25 篇 kernel
  • 25 篇 estimation
  • 23 篇 pattern recognit...
  • 23 篇 shape
  • 23 篇 two dimensional ...
  • 22 篇 face recognition

机构

  • 16 篇 univ chinese aca...
  • 10 篇 carnegie mellon ...
  • 8 篇 stanford univ st...
  • 6 篇 cas ctr excellen...
  • 6 篇 univ sci & techn...
  • 6 篇 adobe res san jo...
  • 6 篇 sensetime res pe...
  • 5 篇 univ oxford oxfo...
  • 5 篇 swiss fed inst t...
  • 5 篇 shanghai jiao to...
  • 5 篇 univ calif berke...
  • 5 篇 nvidia santa cla...
  • 5 篇 nanyang technol ...
  • 4 篇 google mountain ...
  • 4 篇 univ edinburgh e...
  • 4 篇 chinese univ hon...
  • 4 篇 microsoft res as...
  • 4 篇 univ tokyo
  • 4 篇 casia cripac peo...
  • 4 篇 univ adelaide ad...

作者

  • 5 篇 kautz jan
  • 4 篇 van gool luc
  • 4 篇 gupta abhinav
  • 4 篇 grauman kristen
  • 4 篇 huang kaiqi
  • 4 篇 belongie serge
  • 4 篇 wang xiaogang
  • 4 篇 hospedales timot...
  • 4 篇 yang ming-hsuan
  • 4 篇 xiang tao
  • 4 篇 wang gang
  • 3 篇 fua pascal
  • 3 篇 girshick ross
  • 3 篇 liu yang
  • 3 篇 darrell trevor
  • 3 篇 feng jiashi
  • 3 篇 borji ali
  • 3 篇 shao jing
  • 3 篇 davis larry s.
  • 3 篇 li fei-fei

语言

  • 320 篇 英文
检索条件"任意字段=31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018"
320 条 记 录,以下是1-10 订阅
排序:
Gesture recognition: Focus on the Hands  31
Gesture Recognition: Focus on the Hands
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Narayana, Pradyumna Beveridge, J. Ross Draper, Bruce A. Colorado State Univ Ft Collins CO 80523 USA
Gestures are a common form of human communication and important for human computer interfaces (HCI). Recent approaches to gesture recognition use deep learning methods, including multi-channel methods. We show that wh... 详细信息
来源: 评论
A Two-step Disentanglement Method  31
A Two-Step Disentanglement Method
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hadad, Naama Wolf, Lior Shahar, Moni Tel Aviv Univ Tel Aviv Israel Facebook Res Menlo Pk CA USA
We address the problem of disentanglement of factors that generate a given data into those that are correlated with the labeling and those that are not. Our solution is simpler than previous solutions and employs adve... 详细信息
来源: 评论
Learning Deep Descriptors with Scale-Aware Triplet Networks  31
Learning Deep Descriptors with Scale-Aware Triplet Networks
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Keller, Michel Chen, Zetao Maffra, Fabiola Schmuck, Patrik Chli, Margarita Swiss Fed Inst Technol Vis Robot Lab Zurich Switzerland
Research on learning suitable feature descriptors for computer vision has recently shifted to deep learning where the biggest challenge lies with the formulation of appropriate loss functions, especially since the des... 详细信息
来源: 评论
Unsupervised Learning and Segmentation of Complex Activities from Video  31
Unsupervised Learning and Segmentation of Complex Activities...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sener, Fadime Yao, Angela Univ Bonn Bonn Germany
This paper presents a new method for unsupervised segmentation of complex activities from video into multiple steps, or sub-activities, without any textual input. We propose an iterative discriminative-generative appr... 详细信息
来源: 评论
Analyzing Filters Toward Efficient ConvNet  31
Analyzing Filters Toward Efficient ConvNet
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kobayashi, Takumi Natl Inst Adv Ind Sci & Technol Tokyo Japan
Deep convolutional neural network (ConvNet) is a promising approach for high-performance image classification. The behavior of ConvNet is analyzed mainly based on the neuron activations, such as by visualizing them. I... 详细信息
来源: 评论
Burst Denoising with Kernel Prediction Networks  31
Burst Denoising with Kernel Prediction Networks
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Mildenhall, Ben Barron, Jonathan T. Chen, Jiawen Sharlet, Dillon Ng, Ren Carroll, Robert Univ Calif Berkeley Berkeley CA 94720 USA Google Res Mountain View CA 94043 USA Google Mountain View CA 94043 USA
We present a technique for jointly denoising bursts of images taken from a handheld camera. In particular, we propose a convolutional neural network architecture for predicting spatially varying kernels that can both ... 详细信息
来源: 评论
DS*: Tighter Lifting-Free Convex Relaxations for Quadratic Matching Problems  31
DS*: Tighter Lifting-Free Convex Relaxations for Quadratic M...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Bernard, Florian Theobalt, Christian Moeller, Michael MPI Informat Saarbrucken Germany Saarland Informat Campus Saarbrucken Germany Univ Siegen Siegen Germany
In this work we study convex relaxations of quadratic optimisation problems over permutation matrices. While existing semidefinite programming approaches can achieve remarkably tight relaxations, they have the strong ... 详细信息
来源: 评论
Continuous Relaxation of MAP Inference: A Nonconvex Perspective  31
Continuous Relaxation of MAP Inference: A Nonconvex Perspect...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Le-Huu, D. Khue Paragios, Nikos Univ Paris Saclay Cent Supelec Paris France INRIA Le Chesnay France TheraPanacea Paris France
In this paper, we study a nonconvex continuous relaxation of MAP inference in discrete Markov random fields (MRFs). We show that for arbitrary MRFs, this relaxation is tight, and a discrete stationary point of it can ... 详细信息
来源: 评论
PointGrid: A Deep Network for 3D Shape Understanding  31
PointGrid: A Deep Network for 3D Shape Understanding
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Le, Truc Duan, Ye Univ Missouri Columbia MO 65211 USA
Volumetric grid is widely used for 3D deep learning due to its regularity. However the use of relatively lower order local approximation functions such as piece-wise constant function (occupancy grid) or piece-wise li... 详细信息
来源: 评论
Joint Cuts and Matching of Partitions in One Graph  31
Joint Cuts and Matching of Partitions in One Graph
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yu, Tianshu Yan, Junchi Zhao, Jieyi Li, Baoxin Arizona State Univ Tempe AZ 85287 USA Shanghai Jiao Tong Univ Shanghai Peoples R China IBM Res Yorktown Hts NY 10598 USA Univ Texas Houston Houston TX USA
As two fundamental problems, graph cuts and graph matching have been intensively investigated over the decades, resulting in vast literature in these two topics respectively. However the way of jointly applying and so... 详细信息
来源: 评论