咨询与建议

限定检索结果

文献类型

  • 320 篇 会议

馆藏范围

  • 320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 318 篇 计算机科学与技术...
    • 199 篇 控制科学与工程
    • 78 篇 机械工程
    • 3 篇 软件工程
    • 2 篇 光学工程
    • 1 篇 生物工程
  • 200 篇 理学
    • 199 篇 系统科学
    • 2 篇 物理学
    • 1 篇 生物学

主题

  • 135 篇 task analysis
  • 122 篇 computer vision
  • 122 篇 training
  • 90 篇 computer archite...
  • 89 篇 feature extracti...
  • 77 篇 visualization
  • 55 篇 three-dimensiona...
  • 55 篇 computational mo...
  • 45 篇 neural networks
  • 41 篇 semantics
  • 35 篇 cameras
  • 29 篇 image segmentati...
  • 29 篇 convolution
  • 27 篇 face
  • 25 篇 kernel
  • 25 篇 estimation
  • 23 篇 pattern recognit...
  • 23 篇 shape
  • 23 篇 two dimensional ...
  • 22 篇 face recognition

机构

  • 16 篇 univ chinese aca...
  • 10 篇 carnegie mellon ...
  • 8 篇 stanford univ st...
  • 6 篇 cas ctr excellen...
  • 6 篇 univ sci & techn...
  • 6 篇 adobe res san jo...
  • 6 篇 sensetime res pe...
  • 5 篇 univ oxford oxfo...
  • 5 篇 swiss fed inst t...
  • 5 篇 shanghai jiao to...
  • 5 篇 univ calif berke...
  • 5 篇 nvidia santa cla...
  • 5 篇 nanyang technol ...
  • 4 篇 google mountain ...
  • 4 篇 univ edinburgh e...
  • 4 篇 chinese univ hon...
  • 4 篇 microsoft res as...
  • 4 篇 univ tokyo
  • 4 篇 casia cripac peo...
  • 4 篇 univ adelaide ad...

作者

  • 5 篇 kautz jan
  • 4 篇 van gool luc
  • 4 篇 gupta abhinav
  • 4 篇 grauman kristen
  • 4 篇 huang kaiqi
  • 4 篇 belongie serge
  • 4 篇 wang xiaogang
  • 4 篇 hospedales timot...
  • 4 篇 yang ming-hsuan
  • 4 篇 xiang tao
  • 4 篇 wang gang
  • 3 篇 fua pascal
  • 3 篇 girshick ross
  • 3 篇 liu yang
  • 3 篇 darrell trevor
  • 3 篇 feng jiashi
  • 3 篇 borji ali
  • 3 篇 shao jing
  • 3 篇 davis larry s.
  • 3 篇 li fei-fei

语言

  • 320 篇 英文
检索条件"任意字段=31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018"
320 条 记 录,以下是101-110 订阅
排序:
Mobile Video Object Detection with Temporally-Aware Feature Maps  31
Mobile Video Object Detection with Temporally-Aware Feature ...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Mason Zhu, Menglong Georgia Tech Atlanta GA 30332 USA Google Mountain View CA 94043 USA
This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional... 详细信息
来源: 评论
Feedback-prop: Convolutional Neural Network Inference under Partial Evidence  31
Feedback-prop: Convolutional Neural Network Inference under ...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Tianlu Yamaguchi, Kota Ordonez, Vicente Univ Virginia Charlottesville VA 22903 USA CyberAgent Inc Tokyo Japan
We propose an inference procedure for deep convolutional neural networks (CNNs) when partial evidence is available. Our method consists of a general feedback-based propagation approach (feedback-prop) that boosts the ... 详细信息
来源: 评论
Zero-shot recognition via Semantic Embeddings and Knowledge Graphs  31
Zero-shot Recognition via Semantic Embeddings and Knowledge ...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Xiaolong Ye, Yufei Gupta, Abhinav Carnegie Mellon Univ Inst Robot Pittsburgh PA 15213 USA
We consider the problem of zero-shot recognition: learning a visual classifier for a category with zero training examples, just using the word embedding of the category and its relationship to other categories, which ... 详细信息
来源: 评论
Multi-view Harmonized Bilinear Network for 3D Object recognition  31
Multi-view Harmonized Bilinear Network for 3D Object Recogni...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yu, Tan Meng, Jingjing Yuan, Junsong Nanyang Technol Univ Interdisciplinary Grad Sch Singapore Singapore SUNY Buffalo Dept CSE Buffalo NY USA
View-based methods have achieved considerable success in 3D object recognition tasks. Different from existing view based methods pooling the view-wise features, we tackle this problem from the perspective of patches-t... 详细信息
来源: 评论
OATM: Occlusion Aware Template Matching by Consensus Set Maximization  31
OATM: Occlusion Aware Template Matching by Consensus Set Max...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Korman, Simon Milam, Mark Soatto, stefano Weizmann Inst Sci Rehovot Israel Northrop Grumman Falls Church VA USA Univ Calif Los Angeles Vis Lab Los Angeles CA 90095 USA
We present a novel approach to template matching that is efficient, can handle partial occlusions, and comes with provable performance guarantees. A key component of the method is a reduction that transforms the probl... 详细信息
来源: 评论
Hallucinated-IQA: No-Reference Image Quality Assessment via Adversarial Learning  31
Hallucinated-IQA: No-Reference Image Quality Assessment via ...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lin, Kwan-Yee Wang, Guanxiang Peking Univ Sch Math Sci Dept Informat Sci Beijing Peoples R China Peking Univ Sch Math Sci Dept Math Beijing Peoples R China
No-reference image quality assessment (NR-IQA) is a fundamental yet challenging task in low-level computer vision community. The difficulty is particularly pronounced for the limited information, for which the corresp... 详细信息
来源: 评论
Look, Imagine and Match: Improving Textual-Visual Cross-Modal Retrieval with Generative Models  31
Look, Imagine and Match: Improving Textual-Visual Cross-Moda...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gu, Jiuxiang Cai, Jianfei Joty, Shafiq Niu, Li Wang, Gang Nanyang Technol Univ Interdisciplinary Grad Sch ROSE Lab Singapore Singapore Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore Rice Univ Houston TX 77251 USA Alibaba AI Labs Hangzhou Zhejiang Peoples R China
Textual-visual cross-modal retrieval has been a hot research topic in both computer vision and natural language processing communities. Learning appropriate representations for multi-modal data is crucial for the cros... 详细信息
来源: 评论
Fooling vision and Language Models Despite Localization and Attention Mechanism  31
Fooling Vision and Language Models Despite Localization and ...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xu, Xiaojun Chen, Xinyun Liu, Chang Rohrbach, Anna Darrell, Trevor Song, Dawn Shanghai Jiao Tong Univ Shanghai Peoples R China Univ Calif Berkeley EECS Berkeley CA 94720 USA MPI Informat Saarbrucken Germany
Adversarial attacks are known to succeed on classifiers, but it has been an open question whether more complex vision systems are vulnerable. In this paper, we study adversarial examples for vision and language models... 详细信息
来源: 评论
Partially Shared Multi-Task Convolutional Neural Network with Local Constraint for Face Attribute Learning  31
Partially Shared Multi-Task Convolutional Neural Network wit...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cao, Jiajiong Li, Yingming Zhang, Zhongfei Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou Zhejiang Peoples R China
In this paper, we study the face attribute learning problem by considering the identity information and attribute relationships simultaneously. In particular, we first introduce a Partially Shared Multi-task Convoluti... 详细信息
来源: 评论
Classifier Learning with Prior Probabilities for Facial Action Unit recognition  31
Classifier Learning with Prior Probabilities for Facial Acti...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Yong Dong, Weiming Hu, Bao-Gang Ji, Qiang CASIA Natl Lab Pattern Recognit Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Rensselaer Polytech Inst Troy NY 12181 USA
Facial action units (AUs) play an important role in human emotion understanding. One big challenge for data-driven AU recognition approaches is the lack of enough AU annotations, since AU annotation requires strong do... 详细信息
来源: 评论