咨询与建议

限定检索结果

文献类型

  • 320 篇 会议

馆藏范围

  • 320 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 318 篇 工学
    • 318 篇 计算机科学与技术...
    • 199 篇 控制科学与工程
    • 78 篇 机械工程
    • 3 篇 软件工程
    • 2 篇 光学工程
    • 1 篇 生物工程
  • 200 篇 理学
    • 199 篇 系统科学
    • 2 篇 物理学
    • 1 篇 生物学

主题

  • 135 篇 task analysis
  • 122 篇 computer vision
  • 122 篇 training
  • 90 篇 computer archite...
  • 89 篇 feature extracti...
  • 77 篇 visualization
  • 55 篇 three-dimensiona...
  • 55 篇 computational mo...
  • 45 篇 neural networks
  • 41 篇 semantics
  • 35 篇 cameras
  • 29 篇 image segmentati...
  • 29 篇 convolution
  • 27 篇 face
  • 25 篇 kernel
  • 25 篇 estimation
  • 23 篇 pattern recognit...
  • 23 篇 shape
  • 23 篇 two dimensional ...
  • 22 篇 face recognition

机构

  • 16 篇 univ chinese aca...
  • 10 篇 carnegie mellon ...
  • 8 篇 stanford univ st...
  • 6 篇 cas ctr excellen...
  • 6 篇 univ sci & techn...
  • 6 篇 adobe res san jo...
  • 6 篇 sensetime res pe...
  • 5 篇 univ oxford oxfo...
  • 5 篇 swiss fed inst t...
  • 5 篇 shanghai jiao to...
  • 5 篇 univ calif berke...
  • 5 篇 nvidia santa cla...
  • 5 篇 nanyang technol ...
  • 4 篇 google mountain ...
  • 4 篇 univ edinburgh e...
  • 4 篇 chinese univ hon...
  • 4 篇 microsoft res as...
  • 4 篇 univ tokyo
  • 4 篇 casia cripac peo...
  • 4 篇 univ adelaide ad...

作者

  • 5 篇 kautz jan
  • 4 篇 van gool luc
  • 4 篇 gupta abhinav
  • 4 篇 grauman kristen
  • 4 篇 huang kaiqi
  • 4 篇 belongie serge
  • 4 篇 wang xiaogang
  • 4 篇 hospedales timot...
  • 4 篇 yang ming-hsuan
  • 4 篇 xiang tao
  • 4 篇 wang gang
  • 3 篇 fua pascal
  • 3 篇 girshick ross
  • 3 篇 liu yang
  • 3 篇 darrell trevor
  • 3 篇 feng jiashi
  • 3 篇 borji ali
  • 3 篇 shao jing
  • 3 篇 davis larry s.
  • 3 篇 li fei-fei

语言

  • 320 篇 英文
检索条件"任意字段=31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018"
320 条 记 录,以下是41-50 订阅
排序:
MorphNet: Fast & Simple Resource-Constrained structure Learning of Deep Networks  31
MorphNet: Fast & Simple Resource-Constrained Structure Learn...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gordon, Ariel Eban, Elad Nachum, Ofir Chen, Bo Wu, Hao Yang, Tien-Ju Choi, Edward Google AI Mountain View CA 94043 USA Google Brain Mountain View CA USA MIT Energy Efficient Multimedia Syst Grp Cambridge MA 02139 USA Georgia Inst Technol Atlanta GA 30332 USA
We present MorphNet, an approach to automate the design of neural network structures. MorphNet iteratively shrinks and expands a network, shrinking via a resource-weighted sparsifying regularizer on activations and ex... 详细信息
来源: 评论
Art of singular vectors and universal adversarial perturbations  31
Art of singular vectors and universal adversarial perturbati...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Khrulkov, Valentin Oseledets, Ivan Skolkovo Inst Sci & Technol Moscow Russia RAS Inst Numer Math Skolkovo Inst Sci & Technol Moscow Russia
Vulnerability of Deep Neural Networks (DNNs) to adversarial attacks has been attracting a lot of attention in recent studies. It has been shown that for many state of the art DNNs performing image classification there... 详细信息
来源: 评论
4D Human Body Correspondences from Panoramic Depth Maps  31
4D Human Body Correspondences from Panoramic Depth Maps
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Zhong Wu, Minye Zhou, Wangyiteng Yu, Jingyi Univ Delaware Newark DE 19716 USA ShanghaiTech Univ Shanghai Peoples R China
The availability of affordable 3D full body reconstruction systems has given rise to free-viewpoint video (FVV) of human shapes. Most existing solutions produce temporally uncorrelated point clouds or meshes with unkn... 详细信息
来源: 评论
Attentional ShapeContextNet for Point Cloud recognition  31
Attentional ShapeContextNet for Point Cloud Recognition
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xie, Saining Liu, Sainan Chen, Zeyu Tu, Zhuowen Univ Calif San Diego La Jolla CA 92093 USA
We tackle the problem of point cloud recognition. Unlike previous approaches where a point cloud is either converted into a volume/image or represented independently in a permutation-invariant set, we develop a new re... 详细信息
来源: 评论
Deep Diffeomorphic Transformer Networks  31
Deep Diffeomorphic Transformer Networks
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Detlefsen, Nicki Skafte Freifeld, Oren Hauberg, Soren Tech Univ Denmark Lyngby Denmark Ben Gurion Univ Negev Beer Sheva Israel
Spatial Transformer layers allow neural networks, at least in principle, to be invariant to large spatial transformations in image data. The model has, however, seen limited uptake as most practical implementations su... 详细信息
来源: 评论
Connecting Pixels to Privacy and Utility: Automatic Redaction of Private Information in Images  31
Connecting Pixels to Privacy and Utility: Automatic Redactio...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Orekondy, Tribhuvanesh Fritz, Mario Schiele, Bernt Max Planck Inst Informat Saarland Informat Campus Saarbrucken Germany
Images convey a broad spectrum of personal information. If such images are shared on social media platforms, this personal information is leaked which conflicts with the privacy of depicted persons. Therefore, we aim ... 详细信息
来源: 评论
Rethinking the Faster R-CNN Architecture for Temporal Action Localization  31
Rethinking the Faster R-CNN Architecture for Temporal Action...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chao, Yu-Wei Vijayanarasimhan, Sudheendra Seybold, Bryan Ross, David A. Deng, Jia Sukthankar, Rahul Univ Michigan Ann Arbor MI 48109 USA Google Res Pasadena CA USA
We propose TAL-Net, an improved approach to temporal action localization in video that is inspired by the Faster R-CNN object detection framework. TAL-Net addresses three key shortcomings of existing approaches: (1) w... 详细信息
来源: 评论
Aperture Supervision for Monocular Depth Estimation  31
Aperture Supervision for Monocular Depth Estimation
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Srinivasan, Pratul P. Garg, Rahul Wadhwa, Neal Ng, Ren Barron, Jonathan T. Univ Calif Berkeley Berkeley CA 94720 USA Google Res Mountain View CA USA
We present a novel method to train machine learning algorithms to estimate scene depths from a single image, by using the information provided by a camera's aperture as supervision. Prior works use a depth sensor&... 详细信息
来源: 评论
Learning Time/Memory-Efficient Deep Architectures with Budgeted Super Networks  31
Learning Time/Memory-Efficient Deep Architectures with Budge...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Veniat, Tom Denoyer, Ludovic Sorbonne Univ LIP6 F-75005 Paris France Criteo Res Paris France
We propose to focus on the problem of discovering neural network architectures efficient in terms of both prediction quality and cost. For instance, our approach is able to solve the following tasks: learn a neural ne... 详细信息
来源: 评论
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place recognition  31
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Sca...
收藏 引用
31st ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Uy, Mikaela Angelina Lee, Gim Hee Natl Univ Singapore Dept Comp Sci Singapore Singapore
Unlike its image based counterpart, point cloud based retrieval for place recognition has remained as an unexplored and unsolved problem. This is largely due to the difficulty in extracting local feature descriptors f... 详细信息
来源: 评论