咨询与建议

限定检索结果

文献类型

  • 858 篇 会议

馆藏范围

  • 858 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 853 篇 工学
    • 838 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 9 篇 机械工程
    • 8 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 31 篇 理学
    • 15 篇 生物学
    • 10 篇 数学
    • 9 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 1 篇 地质学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...

主题

  • 362 篇 deep learning
  • 359 篇 recognition: det...
  • 358 篇 categorization
  • 357 篇 retrieval
  • 128 篇 vision applicati...
  • 121 篇 low-level vision
  • 119 篇 representation l...
  • 92 篇 vision + languag...
  • 69 篇 segmentation
  • 68 篇 image and video ...
  • 63 篇 scene analysis a...
  • 60 篇 grouping and sha...
  • 54 篇 face
  • 52 篇 gesture
  • 51 篇 and body pose
  • 51 篇 vision + graphic...
  • 48 篇 computational ph...
  • 45 篇 video analytics
  • 44 篇 action recogniti...
  • 42 篇 datasets and eva...

机构

  • 27 篇 peng cheng lab p...
  • 26 篇 univ chinese aca...
  • 23 篇 chinese univ hon...
  • 17 篇 sensetime res pe...
  • 17 篇 nanyang technol ...
  • 15 篇 univ sci & techn...
  • 15 篇 carnegie mellon ...
  • 15 篇 tsinghua univ pe...
  • 15 篇 sun yat sen univ...
  • 14 篇 johns hopkins un...
  • 12 篇 stanford univ st...
  • 11 篇 peking univ peop...
  • 11 篇 incept inst arti...
  • 11 篇 huawei noahs ark...
  • 10 篇 facebook ai res ...
  • 10 篇 univ maryland co...
  • 10 篇 shanghai jiao to...
  • 10 篇 univ calif berke...
  • 9 篇 georgia inst tec...
  • 9 篇 swiss fed inst t...

作者

  • 10 篇 zhang lei
  • 10 篇 wang xiaogang
  • 10 篇 liu wei
  • 10 篇 shao ling
  • 9 篇 zheng wei-shi
  • 9 篇 loy chen change
  • 8 篇 timofte radu
  • 7 篇 chun se young
  • 7 篇 tao dacheng
  • 7 篇 lin liang
  • 7 篇 lin dahua
  • 7 篇 zuo wangmeng
  • 7 篇 yan junjie
  • 7 篇 cheng ming-ming
  • 6 篇 van gool luc
  • 6 篇 chen xilin
  • 6 篇 tian qi
  • 6 篇 rohrbach marcus
  • 6 篇 ji rongrong
  • 6 篇 khan fahad shahb...

语言

  • 858 篇 英文
检索条件"任意字段=32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019"
858 条 记 录,以下是101-110 订阅
排序:
Rare Event Detection using Disentangled Representation Learning  32
Rare Event Detection using Disentangled Representation Learn...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hamaguchi, Ryuhei Sakurada, Ken Nakamura, Ryosuke Natl Inst Adv Ind Sci & Technol Tsukuba Ibaraki Japan
This paper presents a novel method for rare event detection from an image pair with class-imbalanced datasets. A straightforward approach for event detection tasks is to train a detection network from a large-scale da... 详细信息
来源: 评论
Informative Object Annotations: Tell Me Something I Don't Know  32
Informative Object Annotations: Tell Me Something I Don't Kn...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Bracha, Lior Chechik, Gal Bar Ilan Univ Ramat Gan Israel Bar Ilan Univ NVIDIA Res Ramat Gan Israel
Capturing the interesting components of an image is a key aspect of image understanding. When a speaker annotates an image, selecting labels that are informative greatly depends on the prior knowledge of a prospective... 详细信息
来源: 评论
Reflection Removal Using a Dual-Pixel Sensor  32
Reflection Removal Using a Dual-Pixel Sensor
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Punnappurath, Abhijith Brown, Michael S. York Univ N York ON Canada
Reflection removal is the challenging problem of removing unwanted reflections that occur when imaging a scene that is behind a pane of glass. In this paper, we show that most cameras have an overlooked mechanism that... 详细信息
来源: 评论
Activity Driven Weakly Supervised Object Detection  32
Activity Driven Weakly Supervised Object Detection
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yang, Zhenheng Mahajan, Dhruv Ghadiyaram, Deepti Nevatia, Ram Ramanathan, Vignesh Univ Southern Calif Los Angeles CA 90007 USA Facebook AI Menlo Pk CA USA
Weakly supervised object detection aims at reducing the amount of supervision required to train detection models. Such models are traditionally learned from images/videos labelled only with the object class and not th... 详细信息
来源: 评论
Art2Real: Unfolding the Reality of Artworks via Semantically-Aware Image-to-Image Translation  32
Art2Real: Unfolding the Reality of Artworks via Semantically...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tomei, Matteo Cornia, Marcella Baraldi, Lorenzo Cucchiara, Rita Univ Modena & Reggio Emilia Modena Italy
The applicability of computer vision to real paintings and artworks has been rarely investigated, even though a vast heritage would greatly benefit from techniques which can understand and process data from the artist... 详细信息
来源: 评论
REPAIR: Removing Representation Bias by Dataset Resampling  32
REPAIR: Removing Representation Bias by Dataset Resampling
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Yi Vasconcelos, Nuno Univ Calif San Diego La Jolla CA 92093 USA
Modern machine learning datasets can have biases for certain representations that are leveraged by algorithms to achieve high peiformance without learning to solve the underlying task. This problem is referred to as &... 详细信息
来源: 评论
Actively Seeking and Learning from Live Data  32
Actively Seeking and Learning from Live Data
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Teney, Damien van den Hengel, Anton Univ Adelaide Australian Inst Machine Learning Adelaide SA Australia
One of the key limitations of traditional machine learning methods is their requirement for training data that exemplifies all the information to be learned. This is a particular problem for visual question answering ... 详细信息
来源: 评论
Less is More: Learning Highlight Detection from Video Duration  32
Less is More: Learning Highlight Detection from Video Durati...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xiong, Bo Kalantidis, Yannis Ghadiyaram, Deepti Grauman, Kristen Univ Texas Austin Austin TX 78712 USA Facebook AI Menlo Pk CA USA Facebook AI Res Menlo Pk CA 94025 USA
Highlight detection has the potential to significantly ease video browsing, but existing methods often suffer from expensive supervision requirements, where human viewers must manually identify highlights in training ... 详细信息
来源: 评论
Image-Question-Answer Synergistic Network for Visual Dialog  32
Image-Question-Answer Synergistic Network for Visual Dialog
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Guo, Dalu Xu, Chang Tao, Dacheng Univ Sydney UBTECH Sydney AI Ctr Sch Comp Sci FEIT Darlington NSW 2008 Australia
The image, question (combined with the history for dereferencing), and the corresponding answer are three vital components of visual dialog. Classical visual dialog systems integrate the image, question, and history t... 详细信息
来源: 评论
Pedestrian Detection with Autoregressive Network Phases  32
Pedestrian Detection with Autoregressive Network Phases
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Brazil, Garrick Liu, Xiaoming Michigan State Univ E Lansing MI 48824 USA
We present an autoregressive pedestrian detection framework with cascaded phases designed to progressively improve precision. The proposed framework utilizes a novel lightweight stackable decoder-encoder module which ... 详细信息
来源: 评论