咨询与建议

限定检索结果

文献类型

  • 858 篇 会议

馆藏范围

  • 858 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 853 篇 工学
    • 838 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 9 篇 机械工程
    • 8 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 31 篇 理学
    • 15 篇 生物学
    • 10 篇 数学
    • 9 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 1 篇 地质学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...

主题

  • 362 篇 deep learning
  • 359 篇 recognition: det...
  • 358 篇 categorization
  • 357 篇 retrieval
  • 128 篇 vision applicati...
  • 121 篇 low-level vision
  • 119 篇 representation l...
  • 92 篇 vision + languag...
  • 69 篇 segmentation
  • 68 篇 image and video ...
  • 63 篇 scene analysis a...
  • 60 篇 grouping and sha...
  • 54 篇 face
  • 52 篇 gesture
  • 51 篇 and body pose
  • 51 篇 vision + graphic...
  • 48 篇 computational ph...
  • 45 篇 video analytics
  • 44 篇 action recogniti...
  • 42 篇 datasets and eva...

机构

  • 27 篇 peng cheng lab p...
  • 26 篇 univ chinese aca...
  • 23 篇 chinese univ hon...
  • 17 篇 sensetime res pe...
  • 17 篇 nanyang technol ...
  • 15 篇 univ sci & techn...
  • 15 篇 carnegie mellon ...
  • 15 篇 tsinghua univ pe...
  • 15 篇 sun yat sen univ...
  • 14 篇 johns hopkins un...
  • 12 篇 stanford univ st...
  • 11 篇 peking univ peop...
  • 11 篇 incept inst arti...
  • 11 篇 huawei noahs ark...
  • 10 篇 facebook ai res ...
  • 10 篇 univ maryland co...
  • 10 篇 shanghai jiao to...
  • 10 篇 univ calif berke...
  • 9 篇 georgia inst tec...
  • 9 篇 swiss fed inst t...

作者

  • 10 篇 zhang lei
  • 10 篇 wang xiaogang
  • 10 篇 liu wei
  • 10 篇 shao ling
  • 9 篇 zheng wei-shi
  • 9 篇 loy chen change
  • 8 篇 timofte radu
  • 7 篇 chun se young
  • 7 篇 tao dacheng
  • 7 篇 lin liang
  • 7 篇 lin dahua
  • 7 篇 zuo wangmeng
  • 7 篇 yan junjie
  • 7 篇 cheng ming-ming
  • 6 篇 van gool luc
  • 6 篇 chen xilin
  • 6 篇 tian qi
  • 6 篇 rohrbach marcus
  • 6 篇 ji rongrong
  • 6 篇 khan fahad shahb...

语言

  • 858 篇 英文
检索条件"任意字段=32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019"
858 条 记 录,以下是111-120 订阅
排序:
TransGaGa: Geometry-Aware Unsupervised Image-to-Image Translation  32
TransGaGa: Geometry-Aware Unsupervised Image-to-Image Transl...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wu, Wayne Cao, Kaidi Li, Cheng Qian, Chen Loy, Chen Change SenseTime Res Hong Kong Peoples R China Stanford Univ Stanford CA 94305 USA Nanyang Technol Univ Singapore Singapore
Unsupervisedimage-to-image translationaims at learning a mapping between two visual domains. However learning a translationacross large geometry variationsalways ends up with failure. In this work, we present a novel ... 详细信息
来源: 评论
Latent Space Autoregression for Novelty Detection  32
Latent Space Autoregression for Novelty Detection
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Abati, Davide Porrello, Angelo Calderara, Simone Cucchiara, Rita Univ Modena & Reggio Emilia Modena Italy
Novelty detection is commonly referred to as the discrimination of observations that do not conform to a learned model of regularity. Despite its importance in different application settings, designing a novelty detec... 详细信息
来源: 评论
IM-Net for High Resolution Video Frame Interpolation  32
IM-Net for High Resolution Video Frame Interpolation
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Peleg, Tomer Szekely, Pablo Sabo, Doron Sendik, Omry Samsung Israel R&D Ctr Ramat Gan Israel
Video frame interpolation is a long-studied problem in the video processing field. Recently, deep learning approaches have been applied to this problem, showing impressive results on low-resolution benchmarks. However... 详细信息
来源: 评论
Not All Frames Are Equal: Weakly-Supervised Video Grounding with Contextual Similarity and Visual Clustering Losses  32
Not All Frames Are Equal: Weakly-Supervised Video Grounding ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Shi, Jing Xu, Jia Gong, Boqing Xu, Chenliang Univ Rochester Rochester NY 14627 USA Tencent AI Lab Bellevue WA USA
We investigate the problem of weakly-supervised video grounding, where only video-level sentences are provided. This is a challenging task, and previous Multi-Instance Learning (MIL) based image grounding methods turn... 详细信息
来源: 评论
Locating Objects Without Bounding Boxes  32
Locating Objects Without Bounding Boxes
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Ribera, Javier Guera, David Chen, Yuhao Delp, Edward J. Purdue Univ Video & Image Proc Lab VIPER W Lafayette IN 47907 USA
Recent advances in convolutional neural networks (CNN) have achieved remarkable results in locating objects in images. In these networks, the training procedure usually requires providing bounding boxes or the maximum... 详细信息
来源: 评论
Dynamic Scene Deblurring with Parameter Selective Sharing and Nested Skip Connections  32
Dynamic Scene Deblurring with Parameter Selective Sharing an...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gao, Hongyun Tao, Xin Shen, Xiaoyong Jia, Jiaya Chinese Univ Hong Kong Hong Kong Peoples R China Tencent Youtu Lab Shenzhen Peoples R China
Dynamic Scene deblurring is a challenging low-level vision task where spatially variant blur is caused by many factors, e.g., camera shake and object motion. Recent study has made significant progress. Compared with t... 详细信息
来源: 评论
Multi-adversarial Discriminative Deep Domain Generalization for Face Presentation Attack Detection  32
Multi-adversarial Discriminative Deep Domain Generalization ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Shao, Rui Lan, Xiangyuan Li, Jiawei Yuen, Pong C. Hong Kong Baptist Univ Dept Comp Sci Hong Kong Peoples R China
Face presentation attacks have become an increasingly critical issue in the face recognition community. Many face anti-spoofing methods have been proposed, but they cannot generalize well on "unseen" attacks... 详细信息
来源: 评论
What and How Well You Performed? A Multitask Learning Approach to Action Quality Assessment  32
What and How Well You Performed? A Multitask Learning Approa...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Parmar, Paritosh Morris, Brendan Tran Univ Nevada Las Vegas NV 89154 USA
Can performance on the task of action quality assessment (AQA) be improved by exploiting a description of the action and its quality? Current AQA and skills assessment approaches propose to learn features that serve o... 详细信息
来源: 评论
Contrastive Adaptation Network for Unsupervised Domain Adaptation  32
Contrastive Adaptation Network for Unsupervised Domain Adapt...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kang, Guoliang Jiang, Lu Yang, Yi Hauptmann, Alexander G. Univ Technol Sydney CAI Ultimo Australia Google AI Mountain View CA USA Baidu Res Beijing Peoples R China Carnegie Mellon Univ Pittsburgh PA 15213 USA
Unsupervised Domain Adaptation (UDA) makes predictions for the target domain data while manual annotations are only available in the source domain. Previous methods minimize the domain discrepancy neglecting the class... 详细信息
来源: 评论
SeerNet: Predicting Convolutional Neural Network Feature-Map Sparsity through Low-Bit Quantization  32
SeerNet: Predicting Convolutional Neural Network Feature-Map...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cao, Shijie Ma, Lingxiao Xiao, Wencong Zhang, Chen Liu, Yunxin Zhang, Lintao Nie, Lanshun Yang, Zhi Harbin Inst Technol Harbin Peoples R China Peking Univ Beijing Peoples R China Beihang Univ Beijing Peoples R China Microsoft Res Redmond WA 98052 USA
In this paper, we present a novel and general method to accelerate convolutional neural network (CNN) inference by taking advantage of feature map sparsity. We experimentally demonstrate that a highly quantized versio... 详细信息
来源: 评论