咨询与建议

限定检索结果

文献类型

  • 858 篇 会议

馆藏范围

  • 858 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 853 篇 工学
    • 838 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 9 篇 机械工程
    • 8 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 31 篇 理学
    • 15 篇 生物学
    • 10 篇 数学
    • 9 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 1 篇 地质学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...

主题

  • 362 篇 deep learning
  • 359 篇 recognition: det...
  • 358 篇 categorization
  • 357 篇 retrieval
  • 128 篇 vision applicati...
  • 121 篇 low-level vision
  • 119 篇 representation l...
  • 92 篇 vision + languag...
  • 69 篇 segmentation
  • 68 篇 image and video ...
  • 63 篇 scene analysis a...
  • 60 篇 grouping and sha...
  • 54 篇 face
  • 52 篇 gesture
  • 51 篇 and body pose
  • 51 篇 vision + graphic...
  • 48 篇 computational ph...
  • 45 篇 video analytics
  • 44 篇 action recogniti...
  • 42 篇 datasets and eva...

机构

  • 27 篇 peng cheng lab p...
  • 26 篇 univ chinese aca...
  • 23 篇 chinese univ hon...
  • 17 篇 sensetime res pe...
  • 17 篇 nanyang technol ...
  • 15 篇 univ sci & techn...
  • 15 篇 carnegie mellon ...
  • 15 篇 tsinghua univ pe...
  • 15 篇 sun yat sen univ...
  • 14 篇 johns hopkins un...
  • 12 篇 stanford univ st...
  • 11 篇 peking univ peop...
  • 11 篇 incept inst arti...
  • 11 篇 huawei noahs ark...
  • 10 篇 facebook ai res ...
  • 10 篇 univ maryland co...
  • 10 篇 shanghai jiao to...
  • 10 篇 univ calif berke...
  • 9 篇 georgia inst tec...
  • 9 篇 swiss fed inst t...

作者

  • 10 篇 zhang lei
  • 10 篇 wang xiaogang
  • 10 篇 liu wei
  • 10 篇 shao ling
  • 9 篇 zheng wei-shi
  • 9 篇 loy chen change
  • 8 篇 timofte radu
  • 7 篇 chun se young
  • 7 篇 tao dacheng
  • 7 篇 lin liang
  • 7 篇 lin dahua
  • 7 篇 zuo wangmeng
  • 7 篇 yan junjie
  • 7 篇 cheng ming-ming
  • 6 篇 van gool luc
  • 6 篇 chen xilin
  • 6 篇 tian qi
  • 6 篇 rohrbach marcus
  • 6 篇 ji rongrong
  • 6 篇 khan fahad shahb...

语言

  • 858 篇 英文
检索条件"任意字段=32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019"
858 条 记 录,以下是131-140 订阅
排序:
Shapes and Context: In-the-Wild Image Synthesis & Manipulation  32
Shapes and Context: In-the-Wild Image Synthesis & Manipulati...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Banssal, Aayush Sheikh, Yaser Ramanan, Deva Carnegie Mellon Univ Pittsburgh PA 15213 USA
We introduce a data-driven model for interactively synthesizing in-the-wild images from semantic label input masks. Our approach is dramatically different from recent work in this space, in that we make use of no lear... 详细信息
来源: 评论
2.5D Visual Sound  32
2.5D Visual Sound
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gao, Ruohan Grauman, Kristen Univ Texas Austin Austin TX 78712 USA Facebook AI Res Menlo Pk CA USA
Binaural audio provides a listener with 3D sound sensation, allowing a rich perceptual experience of the scene. However, binaural recordings are scarcely available and require nontrivial expertise and equipment to obt... 详细信息
来源: 评论
Incremental Object Learning from Contiguous Views  32
Incremental Object Learning from Contiguous Views
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Stojanov, Stefan Mishra, Samarth Ngoc Anh Thai Dhanda, Nikhil Humayun, Ahmad Yu, Chen Smith, Linda B. Rehg, James M. Georgia Inst Technol Atlanta GA 30332 USA Indiana Univ Bloomington IN 47405 USA
In this work, we present CRIB (Continual recognition Inspired by Babies), a synthetic incremental object learning environment that can produce data that models visual imagery produced by object exploration in early in... 详细信息
来源: 评论
Factor Graph Attention  32
Factor Graph Attention
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Schwartz, Idan Yu, Seunghak Hazan, Tamir Schwing, Alexander Technion Haifa Israel MIT CSAIL Cambridge MA USA UIUC Urbana IL USA Samsung Res Seoul South Korea
Dialog is an effective way to exchange information, but subtle details and nuances are extremely important. While significant progress has paved a path to address visual dialog with algorithms, details and nuances rem... 详细信息
来源: 评论
Local to Global Learning: Gradually Adding Classes for Training Deep Neural Networks  32
Local to Global Learning: Gradually Adding Classes for Train...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cheng, Hao Lian, Dongze Deng, Bowen Gao, Shenghua Tan, Tao Geng, Yanlin ShanghaiTech Univ Sch Informat Sci & Technol Shanghai 201210 Peoples R China Eindhoven Univ Technol Ctr Anal Dept Math & Comp Sci Eindhoven Netherlands Xidian Univ State Key Lab ISN Xian 710071 Shaanxi Peoples R China
We propose a new learning paradigm, Local to Global Learning (LGL), for Deep Neural Networks (DNNs) to improve the performance of classification problems. The core of LGL is to learn a DNN model from fewer categories ... 详细信息
来源: 评论
A Bayesian Perspective on the Deep Image Prior  32
A Bayesian Perspective on the Deep Image Prior
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cheng, Zezhou Gadelha, Matheus Maji, Subhransu Sheldon, Daniel Univ Massachusetts Amherst MA 01003 USA
The deep image prior was recently introduced as a prior for natural images. It represents images as the output of a convolutional network with random inputs. For inference, gradient descent is performed to adjust netw... 详细信息
来源: 评论
Triangulation Learning Network: from Monocular to Stereo 3D Object Detection  32
Triangulation Learning Network: from Monocular to Stereo 3D ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Qin, Zengyi Wang, Jinglu Lu, Yan Tsinghua Univ Beijing Peoples R China Microsoft Res Beijing Peoples R China
In this paper, we study the problem of 3D object detection from stereo images, in which the key challenge is how to effectively utilize stereo information. Different from previous methods using pixel-level depth maps,... 详细信息
来源: 评论
AIRD: Adversarial Learning Framework for Image Repurposing Detection  32
AIRD: Adversarial Learning Framework for Image Repurposing D...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Jaiswal, Ayush Wu, Yue Abd Almageed, Wael Masi, Iacopo Natarajan, Premkumar USC Informat Sci Inst Marina Del Rey CA 90292 USA
Image repurposing is a commonly used method for spreading misinformation on social media and online forums, which involves publishing untampered images with modified metadata to create rumors and further propaganda. W... 详细信息
来源: 评论
Dance with Flow: Two-in-One Stream Action Detection  32
Dance with Flow: Two-in-One Stream Action Detection
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Jiaojiao Snoek, Cees G. M. Univ Amsterdam Amsterdam Netherlands
The goal of this paper is to detect the spatio-temporal extent of an action. The two-stream detection network based on RGB and flow provides state-of-the-art accuracy at the expense of a large model-size and heavy com... 详细信息
来源: 评论
Semantically Aligned Bias Reducing Zero Shot Learning  32
Semantically Aligned Bias Reducing Zero Shot Learning
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Paul, Akanksha Krishnan, Narayanan C. Munjal, Prateek Indian Inst Technol Ropar India
Zero shot learning (ZSL) aims to recognize unseen classes by exploiting semantic relationships between seen and unseen classes. Two major problems faced by ZSL algorithms are the hubness problem and the bias towards t... 详细信息
来源: 评论