咨询与建议

限定检索结果

文献类型

  • 858 篇 会议

馆藏范围

  • 858 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 853 篇 工学
    • 838 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 9 篇 机械工程
    • 8 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 31 篇 理学
    • 15 篇 生物学
    • 10 篇 数学
    • 9 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 1 篇 地质学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...

主题

  • 362 篇 deep learning
  • 359 篇 recognition: det...
  • 358 篇 categorization
  • 357 篇 retrieval
  • 128 篇 vision applicati...
  • 121 篇 low-level vision
  • 119 篇 representation l...
  • 92 篇 vision + languag...
  • 69 篇 segmentation
  • 68 篇 image and video ...
  • 63 篇 scene analysis a...
  • 60 篇 grouping and sha...
  • 54 篇 face
  • 52 篇 gesture
  • 51 篇 and body pose
  • 51 篇 vision + graphic...
  • 48 篇 computational ph...
  • 45 篇 video analytics
  • 44 篇 action recogniti...
  • 42 篇 datasets and eva...

机构

  • 27 篇 peng cheng lab p...
  • 26 篇 univ chinese aca...
  • 23 篇 chinese univ hon...
  • 17 篇 sensetime res pe...
  • 17 篇 nanyang technol ...
  • 15 篇 univ sci & techn...
  • 15 篇 carnegie mellon ...
  • 15 篇 tsinghua univ pe...
  • 15 篇 sun yat sen univ...
  • 14 篇 johns hopkins un...
  • 12 篇 stanford univ st...
  • 11 篇 peking univ peop...
  • 11 篇 incept inst arti...
  • 11 篇 huawei noahs ark...
  • 10 篇 facebook ai res ...
  • 10 篇 univ maryland co...
  • 10 篇 shanghai jiao to...
  • 10 篇 univ calif berke...
  • 9 篇 georgia inst tec...
  • 9 篇 swiss fed inst t...

作者

  • 10 篇 zhang lei
  • 10 篇 wang xiaogang
  • 10 篇 liu wei
  • 10 篇 shao ling
  • 9 篇 zheng wei-shi
  • 9 篇 loy chen change
  • 8 篇 timofte radu
  • 7 篇 chun se young
  • 7 篇 tao dacheng
  • 7 篇 lin liang
  • 7 篇 lin dahua
  • 7 篇 zuo wangmeng
  • 7 篇 yan junjie
  • 7 篇 cheng ming-ming
  • 6 篇 van gool luc
  • 6 篇 chen xilin
  • 6 篇 tian qi
  • 6 篇 rohrbach marcus
  • 6 篇 ji rongrong
  • 6 篇 khan fahad shahb...

语言

  • 858 篇 英文
检索条件"任意字段=32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019"
858 条 记 录,以下是141-150 订阅
排序:
What Object Should I Use? - Task Driven Object Detection  32
What Object Should I Use? - Task Driven Object Detection
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Sawatzky, Johann Souri, Yaser Grund, Christian Gall, Juergen Univ Bonn Bonn Germany
When humans have to solve everyday tasks, they simply pick the objects that are most suitable. While the question which object should one use for a specific task sounds trivial for humans, it is very difficult to answ... 详细信息
来源: 评论
Learning Words by Drawing Images  32
Learning Words by Drawing Images
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Suris, Didac Recasens, Adria Bau, David Harwath, David Glass, James Torralba, Antonio MIT Cambridge MA 02139 USA
We propose a framework for learning through drawing. Our goal is to learn the correspondence between spoken words and abstract visual attributes, from a dataset of spoken descriptions of images. Building upon recent f... 详细信息
来源: 评论
3D Local Features for Direct Pairwise Registration  32
3D Local Features for Direct Pairwise Registration
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Deng, Haowen Birdal, Tolga Ilic, Slobodan Tech Univ Munich Munich Germany Siemens AG Munich Germany Natl Univ Def Technol Changsha Hunan Peoples R China
We present a novel, data driven approach for solving the problem of registration of two point cloud scans. Our approach is direct in the sense that a single pair of corresponding local patches already provides the nec... 详细信息
来源: 评论
DeepCaps: Going Deeper with Capsule Networks  32
DeepCaps: Going Deeper with Capsule Networks
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Rajasegaran, Jathushan Jayasundara, Vinoj Jayasekara, Sandaru Jayasekara, Hirunima Seneviratne, Suranga Rodrigo, Ranga Univ Moratuwa Dept Elect & Telecommun Engn Moratuwa Sri Lanka Univ Sydney Sch Comp Sci Sydney NSW Australia
Capsule Network is a promising concept in deep learning, yet its true potential is not fully realized thus far, providing sub-par performance on several key benchmark datasets with complex data. Drawing intuition from... 详细信息
来源: 评论
Classification-Reconstruction Learning for Open-Set recognition  32
Classification-Reconstruction Learning for Open-Set Recognit...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yoshihashi, Ryota Shao, Wen Kawakami, Rei You, Shaodi Iida, Makoto Naemura, Takeshi Univ Tokyo Tokyo Japan CSIRO Data61 Canberra ACT Australia
Open-set classification is a problem of handling 'unknown' classes that are not contained in the training dataset, whereas traditional classifiers assume that only known classes appear in the test environment.... 详细信息
来源: 评论
Unsupervised Domain-Specific Deblurring via Disentangled Representations  32
Unsupervised Domain-Specific Deblurring via Disentangled Rep...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lu, Boyu Chen, Jun-Cheng Chellappa, Rama Univ Maryland UMIACS College Pk MD 20742 USA
Image deblurring aims to restore the latent sharp images from the corresponding blurred ones. In this paper, we present an unsupervised method for domain-specific, single-image deblurring based on disentangled represe... 详细信息
来源: 评论
K-Nearest Neighbors Hashing  32
K-Nearest Neighbors Hashing
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: He, Xiangyu Wang, Peisong Cheng, Jian Chinese Acad Sci Inst Automat NLPR Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Ctr Excellence Brain Sci & Intelligence Technol Beijing Peoples R China
Hashing based approximate nearest neighbor search embeds high dimensional data to compact binary codes, which enables efficient similarity search and storage. However, the non-isometry sign(.) function makes it hard t... 详细信息
来源: 评论
Show, Control and Tell: A Framework for Generating Controllable and Grounded Captions  32
Show, Control and Tell: A Framework for Generating Controlla...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cornia, Marcella Baraldi, Lorenzo Cucchiara, Rita Univ Modena & Reggio Emilia Modena Italy
Current captioning approaches can describe images using black-box architectures whose behavior is hardly controllable and explainable from the exterior. As an image can be described in infinite ways depending on the g... 详细信息
来源: 评论
A Late Fusion CNN for Digital Matting  32
A Late Fusion CNN for Digital Matting
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Yunke Gong, Lixue Fan, Lubin Ren, Peiran Huang, Qixing Bao, Hujun Xu, Weiwei Zhejiang Univ Hangzhou Peoples R China Alibaba Grp Hangzhou Peoples R China Univ Texas Austin Austin TX 78712 USA
This paper studies the structure of a deep convolutional neural network to predict the foreground alpha matte by taking a single RGB image as input. Our network is fully convolutional with two decoder branches for the... 详细信息
来源: 评论
Sampling Techniques for Large-Scale Object Detection from Sparsely Annotated Objects  32
Sampling Techniques for Large-Scale Object Detection from Sp...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Niitani, Yusuke Akiba, Takuya Kerola, Tommi Ogawa, Toru Sano, Shotaro Suzuki, Shuji Preferred Networks Inc Tokyo Japan
Efficient and reliable methods for training of object detectors are in higher demand than ever, and more and more data relevant to the field is becoming available. However, large datasets like Open Images Dataset v4 (... 详细信息
来源: 评论