咨询与建议

限定检索结果

文献类型

  • 858 篇 会议

馆藏范围

  • 858 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 853 篇 工学
    • 838 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 9 篇 机械工程
    • 8 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 31 篇 理学
    • 15 篇 生物学
    • 10 篇 数学
    • 9 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 1 篇 地质学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...

主题

  • 362 篇 deep learning
  • 359 篇 recognition: det...
  • 358 篇 categorization
  • 357 篇 retrieval
  • 128 篇 vision applicati...
  • 121 篇 low-level vision
  • 119 篇 representation l...
  • 92 篇 vision + languag...
  • 69 篇 segmentation
  • 68 篇 image and video ...
  • 63 篇 scene analysis a...
  • 60 篇 grouping and sha...
  • 54 篇 face
  • 52 篇 gesture
  • 51 篇 and body pose
  • 51 篇 vision + graphic...
  • 48 篇 computational ph...
  • 45 篇 video analytics
  • 44 篇 action recogniti...
  • 42 篇 datasets and eva...

机构

  • 27 篇 peng cheng lab p...
  • 26 篇 univ chinese aca...
  • 23 篇 chinese univ hon...
  • 17 篇 sensetime res pe...
  • 17 篇 nanyang technol ...
  • 15 篇 univ sci & techn...
  • 15 篇 carnegie mellon ...
  • 15 篇 tsinghua univ pe...
  • 15 篇 sun yat sen univ...
  • 14 篇 johns hopkins un...
  • 12 篇 stanford univ st...
  • 11 篇 peking univ peop...
  • 11 篇 incept inst arti...
  • 11 篇 huawei noahs ark...
  • 10 篇 facebook ai res ...
  • 10 篇 univ maryland co...
  • 10 篇 shanghai jiao to...
  • 10 篇 univ calif berke...
  • 9 篇 georgia inst tec...
  • 9 篇 swiss fed inst t...

作者

  • 10 篇 zhang lei
  • 10 篇 wang xiaogang
  • 10 篇 liu wei
  • 10 篇 shao ling
  • 9 篇 zheng wei-shi
  • 9 篇 loy chen change
  • 8 篇 timofte radu
  • 7 篇 chun se young
  • 7 篇 tao dacheng
  • 7 篇 lin liang
  • 7 篇 lin dahua
  • 7 篇 zuo wangmeng
  • 7 篇 yan junjie
  • 7 篇 cheng ming-ming
  • 6 篇 van gool luc
  • 6 篇 chen xilin
  • 6 篇 tian qi
  • 6 篇 rohrbach marcus
  • 6 篇 ji rongrong
  • 6 篇 khan fahad shahb...

语言

  • 858 篇 英文
检索条件"任意字段=32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019"
858 条 记 录,以下是41-50 订阅
排序:
Local detection of stereo occlusion boundaries  32
Local detection of stereo occlusion boundaries
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Jialiang Zickler, Todd Harvard Univ Cambridge MA 02138 USA
Stereo occlusion boundaries are one-dimensional structures in the visual field that separate foreground regions of a scene that are visible to both eyes (binocular regions) from background regions of a scene that are ... 详细信息
来源: 评论
Spectral Metric for Dataset Complexity Assessment  32
Spectral Metric for Dataset Complexity Assessment
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Branchaud-Charron, Frederic Achkar, Andrew Jodoin, Pierre-Marc Univ Sherbrooke Sherbrooke PQ Canada Miovision Inc Kitchener ON Canada
In this paper, we propose a new measure to gauge the complexity of image classification problems. Given an annotated image dataset, our method computes a complexity measure called the cumulative spectral gradient (CSG... 详细信息
来源: 评论
TOUCHDOWN: Natural Language Navigation and Spatial Reasoning in Visual Street Environments  32
TOUCHDOWN: Natural Language Navigation and Spatial Reasoning...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Howard Suhr, Alane Misra, Dipendra Snavely, Noah Artzi, Yoav ASAPP Inc New York NY 10007 USA Cornell Univ Dept Comp Sci New York NY 10021 USA Cornell Univ Cornell Tech New York NY 10021 USA Cornell Univ New York NY 10021 USA
We study the problem of jointly reasoning about language and vision through a navigation and spatial reasoning task. We introduce the Touchdown task and dataset, where an agent must first follow navigation instruction... 详细信息
来源: 评论
PCAN: 3D Attention Map Learning Using Contextual Information for Point Cloud Based Retrieval  32
PCAN: 3D Attention Map Learning Using Contextual Information...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Wenxiao Xiao, Chunxia Wuhan Univ Sch Comp Sci Wuhan Peoples R China
Point cloud based retrieval for place recognition is an emerging problem in vision field. The main challenge is how to find an efficient way to encode the local features into a discriminative global descriptor. In thi... 详细信息
来源: 评论
Timeception for Complex Action recognition  32
Timeception for Complex Action Recognition
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hussein, Noureldien Gavves, Efstratios Smeulders, Arnold W. M. Univ Amsterdam QUVA Lab Amsterdam Netherlands
This paper focuses on the temporal aspect for recognizing human activities in videos;an important visual cue that has long been undervalued. We revisit the conventional definition of activity and restrict it to "... 详细信息
来源: 评论
HetConv: Heterogeneous Kernel-Based Convolutions for Deep CNNs  32
HetConv: Heterogeneous Kernel-Based Convolutions for Deep CN...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Singh, Pravendra Verma, Vinay Kumar Rai, Piyush Namboodiri, Vinay P. IIT Kanpur Dept Comp Sci & Engn Kanpur Uttar Pradesh India
We present a novel deep learning architecture in which the convolution operation leverages heterogeneous kernels. The proposed HetConv (Heterogeneous Kernel-Based Convolution) reduces the computation (FLOPs) and the n... 详细信息
来源: 评论
Assisted Excitation of Activations: A Learning Technique to Improve Object Detectors  32
Assisted Excitation of Activations: A Learning Technique to ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Derakhshani, Mohammad Mahdi Masoudnia, Saeed Shaker, Amir Hossein Mersa, Omid Sadeghi, Mohammad Amin Rastegari, Mohammad Araabi, Babak N. Univ Tehran Dept Elect & Comp Engn MLCM Lab Tehran Iran Allen Inst Artificial Intelligence AI2 Seattle WA USA
We present a simple and effective learning technique that significantly improves mAP of YOLO object detectors without compromising their speed. During network training, we carefully feed in localization information. W... 详细信息
来源: 评论
Revisiting Self-Supervised Visual Representation Learning  32
Revisiting Self-Supervised Visual Representation Learning
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kolesnikov, Alexander Zhai, Xiaohua Beyer, Lucas Google Brain Zurich Switzerland
Unsupervised visual representation learning remains a largely unsolved problem in computer vision research. Among a big body of recently proposed approaches for unsupervised learning of visual representations, a class... 详细信息
来源: 评论
Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks  32
Interpretable and Fine-Grained Visual Explanations for Convo...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wagner, Joerg Koehler, Jan Mathias Gindele, Tobias Hetzel, Leon Wiedemer, Jakob Thaddaeus Behnke, Sven Bosch Ctr Artificial Intelligence BCAI Renningen Germany Univ Bonn Bonn Germany
To verify and validate networks, it is essential to gain insight into their decisions, limitations as well as possible shortcomings of training data. In this work, we propose a post-hoc, optimization based visual expl... 详细信息
来源: 评论
Texture Mixer: A Network for Controllable Synthesis and Interpolation of Texture  32
Texture Mixer: A Network for Controllable Synthesis and Inte...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yu, Ning Barnes, Connelly Shechtman, Eli Amirghodsi, Sohrab Lukac, Michal Univ Maryland College Pk MD 20742 USA Max Planck Inst Informat Saarbrucken Germany Adobe Res San Jose CA USA Univ Virginia Charlottesville VA 22903 USA
This paper addresses the problem of interpolating visual textures. We formulate this problem by requiring (1) by example controllability and (2) realistic and smooth interpolation among an arbitrary number of texture ... 详细信息
来源: 评论