咨询与建议

限定检索结果

文献类型

  • 858 篇 会议

馆藏范围

  • 858 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 853 篇 工学
    • 838 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 9 篇 机械工程
    • 8 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 31 篇 理学
    • 15 篇 生物学
    • 10 篇 数学
    • 9 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 1 篇 地质学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...

主题

  • 362 篇 deep learning
  • 359 篇 recognition: det...
  • 358 篇 categorization
  • 357 篇 retrieval
  • 128 篇 vision applicati...
  • 121 篇 low-level vision
  • 119 篇 representation l...
  • 92 篇 vision + languag...
  • 69 篇 segmentation
  • 68 篇 image and video ...
  • 63 篇 scene analysis a...
  • 60 篇 grouping and sha...
  • 54 篇 face
  • 52 篇 gesture
  • 51 篇 and body pose
  • 51 篇 vision + graphic...
  • 48 篇 computational ph...
  • 45 篇 video analytics
  • 44 篇 action recogniti...
  • 42 篇 datasets and eva...

机构

  • 27 篇 peng cheng lab p...
  • 26 篇 univ chinese aca...
  • 23 篇 chinese univ hon...
  • 17 篇 sensetime res pe...
  • 17 篇 nanyang technol ...
  • 15 篇 univ sci & techn...
  • 15 篇 carnegie mellon ...
  • 15 篇 tsinghua univ pe...
  • 15 篇 sun yat sen univ...
  • 14 篇 johns hopkins un...
  • 12 篇 stanford univ st...
  • 11 篇 peking univ peop...
  • 11 篇 incept inst arti...
  • 11 篇 huawei noahs ark...
  • 10 篇 facebook ai res ...
  • 10 篇 univ maryland co...
  • 10 篇 shanghai jiao to...
  • 10 篇 univ calif berke...
  • 9 篇 georgia inst tec...
  • 9 篇 swiss fed inst t...

作者

  • 10 篇 zhang lei
  • 10 篇 wang xiaogang
  • 10 篇 liu wei
  • 10 篇 shao ling
  • 9 篇 zheng wei-shi
  • 9 篇 loy chen change
  • 8 篇 timofte radu
  • 7 篇 chun se young
  • 7 篇 tao dacheng
  • 7 篇 lin liang
  • 7 篇 lin dahua
  • 7 篇 zuo wangmeng
  • 7 篇 yan junjie
  • 7 篇 cheng ming-ming
  • 6 篇 van gool luc
  • 6 篇 chen xilin
  • 6 篇 tian qi
  • 6 篇 rohrbach marcus
  • 6 篇 ji rongrong
  • 6 篇 khan fahad shahb...

语言

  • 858 篇 英文
检索条件"任意字段=32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019"
858 条 记 录,以下是51-60 订阅
排序:
It's not about the Journey;It's about the Destination: Following Soft Paths under Question-Guidance for Visual Reasoning  32
It's not about the Journey;It's about the Destination: Follo...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Haurilet, Monica Roitberg, Alina Stiefelhagen, Rainer Karlsruhe Inst Technol D-76131 Karlsruhe Germany
Visual Reasoning remains a challenging task, as it has to deal with long-range and multi-step object relationships in the scene. We present a new model for Visual Reasoning, aimed at capturing the interplay among indi... 详细信息
来源: 评论
Neural Sequential Phrase Grounding (SeqGROUnd)  32
Neural Sequential Phrase Grounding (SeqGROUND)
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Dogan, Pelin Sigal, Leonid Gross, Markus Swiss Fed Inst Technol Zurich Switzerland Univ British Columbia Vancouver BC Canada Vector Inst Toronto ON Canada Disney Res Zurich Switzerland
We propose an end-to-end approach for phrase grounding in images. Unlike prior methods that typically attempt to ground each phrase independently by building an imagetext embedding, our architecture formulates groundi... 详细信息
来源: 评论
Multi-Task Multi-Sensor Fusion for 3D Object Detection  32
Multi-Task Multi-Sensor Fusion for 3D Object Detection
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liang, Ming Yang, Bin Chen, Yun Hu, Rui Urtasun, Raquel Uber Adv Technol Grp Pittsburgh PA 15201 USA Univ Toronto Toronto ON Canada Uber AI Residency Program San Francisco CA USA
In this paper we propose to exploit multiple related tasks for accurate multi-sensor 3D object detection. Towards this goal we present an end-to-end learnable architecture that reasons about 2D and 3D object detection... 详细信息
来源: 评论
VizWiz-Priv: A Dataset for Recognizing the Presence and Purpose of Private Visual Information in Images Taken by Blind People  32
VizWiz-Priv: A Dataset for Recognizing the Presence and Purp...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Gurari, Danna Li, Qing Lin, Chi Zhao, Yinan Guo, Anhong Stangl, Abigale Bigham, Jeffrey P. Univ Texas Austin Austin TX 78712 USA Univ Calif Los Angeles Los Angeles CA 90024 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA Univ Colorado Boulder CO 80309 USA
We introduce the first visual privacy dataset originating from people who are blind in order to better understand their privacy disclosures and to encourage the development of algorithms that can assist in preventing ... 详细信息
来源: 评论
Attention Branch Network: Learning of Attention Mechanism for Visual Explanation  32
Attention Branch Network: Learning of Attention Mechanism fo...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Fukui, Hiroshi Hirakawa, Tsubasa Yamashita, Takayoshi Fujiyoshi, Hironobu Chubu Univ 1200 Matsumotocho Kasugai Aichi Japan
Visual explanation enables humans to understand the decision making of deep convolutional neural network (CNN), but it is insufficient to contribute to improving CNN performance. In this paper, we focus on the attenti... 详细信息
来源: 评论
Adaptive NMS: Refining Pedestrian Detection in a Crowd  32
Adaptive NMS: Refining Pedestrian Detection in a Crowd
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Songtao Huang, Di Wang, Yunhong Beihang Univ Beijing Adv Innovat Ctr Big Data & Brain Comp Beijing Peoples R China Beihang Univ State Key Lab Software Dev Environm Beijing Peoples R China Beihang Univ Sch Comp Sci & Engn Beijing 100191 Peoples R China
Pedestrian detection in a crowd is a very challenging issue. This paper addresses this problem by a novel Non-Maximum Suppression (NMS) algorithm to better refine the bounding boxes given by detectors. The contributio... 详细信息
来源: 评论
MBS: Macroblock Scaling for CNN Model Reduction  32
MBS: Macroblock Scaling for CNN Model Reduction
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lin, Yu-Hsun Chou, Chun-Nan Chang, Edward Y. HTC Res & Healthcare DeepQ New Taipei Taiwan
In this paper we propose the macroblock scaling (MBS) algorithm, which can be applied to various CNN architectures to reduce their model size. MBS adaptively reduces each CNN macroblock depending on its information re... 详细信息
来源: 评论
Recurrent Back-Projection Network for Video Super-Resolution  32
Recurrent Back-Projection Network for Video Super-Resolution
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Haris, Muhammad Shakhnarovich, Greg Ukita, Norimichi Toyota Technol Inst Nagoya Aichi Japan Toyota Technol Inst Chicago IL USA
We proposed a novel architecture for the problem of video super-resolution. We integrate spatial and temporal contexts from continuous video frames using a recurrent encoder-decoder module, that fuses multi frame info... 详细信息
来源: 评论
Long-Term Feature Banks for Detailed Video Understanding  32
Long-Term Feature Banks for Detailed Video Understanding
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wu, Chao-Yuan Feichtenhofer, Christoph Fan, Haoqi He, Kaiming Krahenbuhl, Philipp Girshick, Ross Univ Texas Austin Austin TX 78712 USA Facebook AI Res FAIR Menlo Pk CA 94025 USA
To understand the world, we humans constantly need to relate the present to the past, and put events in context. In this paper, we enable existing video models to do the same. We propose a long-term feature bank-suppo... 详细信息
来源: 评论
Learning Video Representations from Correspondence Proposals  32
Learning Video Representations from Correspondence Proposals
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liu, Xingyu Lee, Joon-Young Jin, Hailin Stanford Univ Stanford CA 94305 USA Adobe Res San Jose CA USA
Correspondences between frames encode rich information about dynamic content in videos. However, it is challenging to effectively capture and learn those due to their irregular structure and complex dynamics. In this ... 详细信息
来源: 评论