咨询与建议

限定检索结果

文献类型

  • 858 篇 会议

馆藏范围

  • 858 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 853 篇 工学
    • 838 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 9 篇 机械工程
    • 8 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 31 篇 理学
    • 15 篇 生物学
    • 10 篇 数学
    • 9 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 1 篇 地质学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...

主题

  • 362 篇 deep learning
  • 359 篇 recognition: det...
  • 358 篇 categorization
  • 357 篇 retrieval
  • 128 篇 vision applicati...
  • 121 篇 low-level vision
  • 119 篇 representation l...
  • 92 篇 vision + languag...
  • 69 篇 segmentation
  • 68 篇 image and video ...
  • 63 篇 scene analysis a...
  • 60 篇 grouping and sha...
  • 54 篇 face
  • 52 篇 gesture
  • 51 篇 and body pose
  • 51 篇 vision + graphic...
  • 48 篇 computational ph...
  • 45 篇 video analytics
  • 44 篇 action recogniti...
  • 42 篇 datasets and eva...

机构

  • 27 篇 peng cheng lab p...
  • 26 篇 univ chinese aca...
  • 23 篇 chinese univ hon...
  • 17 篇 sensetime res pe...
  • 17 篇 nanyang technol ...
  • 15 篇 univ sci & techn...
  • 15 篇 carnegie mellon ...
  • 15 篇 tsinghua univ pe...
  • 15 篇 sun yat sen univ...
  • 14 篇 johns hopkins un...
  • 12 篇 stanford univ st...
  • 11 篇 peking univ peop...
  • 11 篇 incept inst arti...
  • 11 篇 huawei noahs ark...
  • 10 篇 facebook ai res ...
  • 10 篇 univ maryland co...
  • 10 篇 shanghai jiao to...
  • 10 篇 univ calif berke...
  • 9 篇 georgia inst tec...
  • 9 篇 swiss fed inst t...

作者

  • 10 篇 zhang lei
  • 10 篇 wang xiaogang
  • 10 篇 liu wei
  • 10 篇 shao ling
  • 9 篇 zheng wei-shi
  • 9 篇 loy chen change
  • 8 篇 timofte radu
  • 7 篇 chun se young
  • 7 篇 tao dacheng
  • 7 篇 lin liang
  • 7 篇 lin dahua
  • 7 篇 zuo wangmeng
  • 7 篇 yan junjie
  • 7 篇 cheng ming-ming
  • 6 篇 van gool luc
  • 6 篇 chen xilin
  • 6 篇 tian qi
  • 6 篇 rohrbach marcus
  • 6 篇 ji rongrong
  • 6 篇 khan fahad shahb...

语言

  • 858 篇 英文
检索条件"任意字段=32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019"
858 条 记 录,以下是71-80 订阅
排序:
Feature Space Perturbations Yield More Transferable Adversarial Examples  32
Feature Space Perturbations Yield More Transferable Adversar...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Inkawhich, Nathan Wen, Wei Li, Hai (Helen) Chen, Yiran Duke Univ Elect & Comp Engn Dept Durham NC 27708 USA
Many recent works have shown that deep learning models are vulnerable to quasi-imperceptible input perturbations, yet practitioners cannot fully explain this behavior. This work describes a transfer-based blackbox tar... 详细信息
来源: 评论
Joint Representative Selection and Feature Learning: A Semi-Supervised Approach  32
Joint Representative Selection and Feature Learning: A Semi-...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Suchen Meng, Jingjing Yuan, Junsong Tan, Yap-Peng Nanyang Technol Univ Singapore Singapore SUNY Buffalo Buffalo NY USA
In this papa;we propose a semi-supervised approach for representative selection, which finds a small set of representatives that can well summarize a large data collection. Given labeled source data and big unlabeled ... 详细信息
来源: 评论
Learning to Calibrate Straight Lines for Fisheye Image Rectification  32
Learning to Calibrate Straight Lines for Fisheye Image Recti...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xue, Zhucun Xue, Nan Xia, Gui-Song Shen, Weiming Wuhan Univ CAPTAIN LIESMARS Wuhan 430079 Hubei Peoples R China
This paper presents a new deep-learning based method to simultaneously calibrate the intrinsic parameters of fisheye lens and rectify the distorted images. Assuming that the distorted lines generated by fisheye projec... 详细信息
来源: 评论
MS-TCN: Multi-Stage Temporal Convolutional Network for Action Segmentation  32
MS-TCN: Multi-Stage Temporal Convolutional Network for Actio...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Abu Farha, Yazan Gall, Juergen Univ Bonn Bonn Germany
Temporally locating and classifying action segments in long untrimmed videos is of particular interest to many applications like surveillance and robotics. While traditional approaches follow a two-step pipeline, by g... 详细信息
来源: 评论
Learning to Synthesize Motion Blur  32
Learning to Synthesize Motion Blur
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Brooks, Tim Barron, Jonathan T. Google Res Mountain View CA 94043 USA
We present a technique for synthesizing a motion blurred image from a pair of unblurred images captured in succession. To build this system we motivate and design a differentiable "line prediction" layer to ... 详细信息
来源: 评论
Engaging Image Captioning via Personality  32
Engaging Image Captioning via Personality
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Shuster, Kurt Humeau, Samuel Hu, Hexiang Bordes, Antoine Weston, Jason Facebook AI Res Menlo Pk CA 94025 USA
Standard image captioning tasks such as COCO and Flickr30k are factual, neutral in tone and (to a human) state the obvious (e.g., "a man playing a guitar"). While such tasks are useful to verify that a machi... 详细信息
来源: 评论
Blind Geometric Distortion Correction on Images Through Deep Learning  32
Blind Geometric Distortion Correction on Images Through Deep...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Li, Xiaoyu Zhang, Bo Sander, Pedro V. Liao, Jing Hong Kong Univ Sci & Technol Hong Kong Peoples R China City Univ Hong Kong Hong Kong Peoples R China
We propose the first general framework to automatically correct different types of geometric distortion in a single input image. Our proposed method employs convolutional neural networks (CNNs) trained by using a larg... 详细信息
来源: 评论
Learning Implicit Fields for Generative Shape Modeling  32
Learning Implicit Fields for Generative Shape Modeling
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Chen, Zhiqin Zhang, Hao Simon Fraser Univ Burnaby BC Canada
We advocate the use of implicit fields for learning generative models of shapes and introduce an implicit field decoder, called IM-NET, for shape generation, aimed at improving the visual quality of the generated shap... 详细信息
来源: 评论
Text2Scene: Generating Compositional Scenes from Textual Descriptions  32
Text2Scene: Generating Compositional Scenes from Textual Des...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Tan, Fuwen Feng, Song Ordonez, Vicente Univ Virginia Charlottesville VA 22903 USA IBM Thomas J Watson Res Ctr Yorktown Hts NY USA
In this paper we propose Text2Scene, a model that generates various forms of compositional scene representations from natural language descriptions. Unlike recent works, our method does NOT use Generative Adversarial ... 详细信息
来源: 评论
Content-Aware Multi-Level Guidance for Interactive Instance Segmentation  32
Content-Aware Multi-Level Guidance for Interactive Instance ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Majumder, Soumajit Yao, Angela Univ Bonn Inst Comp Sci 2 Bonn Germany Natl Univ Singapore Sch Comp Singapore Singapore
In interactive instance segmentation, users give feedback to iteratively refine segmentation masks. The user-provided clicks are transformed into guidance maps which provide the network with necessary cues on the wher... 详细信息
来源: 评论