咨询与建议

限定检索结果

文献类型

  • 858 篇 会议

馆藏范围

  • 858 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 853 篇 工学
    • 838 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 15 篇 生物工程
    • 10 篇 光学工程
    • 9 篇 机械工程
    • 8 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 3 篇 电气工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 31 篇 理学
    • 15 篇 生物学
    • 10 篇 数学
    • 9 篇 物理学
    • 5 篇 统计学(可授理学、...
    • 3 篇 化学
    • 1 篇 地质学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
  • 3 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...
    • 1 篇 药学(可授医学、理...

主题

  • 362 篇 deep learning
  • 359 篇 recognition: det...
  • 358 篇 categorization
  • 357 篇 retrieval
  • 128 篇 vision applicati...
  • 121 篇 low-level vision
  • 119 篇 representation l...
  • 92 篇 vision + languag...
  • 69 篇 segmentation
  • 68 篇 image and video ...
  • 63 篇 scene analysis a...
  • 60 篇 grouping and sha...
  • 54 篇 face
  • 52 篇 gesture
  • 51 篇 and body pose
  • 51 篇 vision + graphic...
  • 48 篇 computational ph...
  • 45 篇 video analytics
  • 44 篇 action recogniti...
  • 42 篇 datasets and eva...

机构

  • 27 篇 peng cheng lab p...
  • 26 篇 univ chinese aca...
  • 23 篇 chinese univ hon...
  • 17 篇 sensetime res pe...
  • 17 篇 nanyang technol ...
  • 15 篇 univ sci & techn...
  • 15 篇 carnegie mellon ...
  • 15 篇 tsinghua univ pe...
  • 15 篇 sun yat sen univ...
  • 14 篇 johns hopkins un...
  • 12 篇 stanford univ st...
  • 11 篇 peking univ peop...
  • 11 篇 incept inst arti...
  • 11 篇 huawei noahs ark...
  • 10 篇 facebook ai res ...
  • 10 篇 univ maryland co...
  • 10 篇 shanghai jiao to...
  • 10 篇 univ calif berke...
  • 9 篇 georgia inst tec...
  • 9 篇 swiss fed inst t...

作者

  • 10 篇 zhang lei
  • 10 篇 wang xiaogang
  • 10 篇 liu wei
  • 10 篇 shao ling
  • 9 篇 zheng wei-shi
  • 9 篇 loy chen change
  • 8 篇 timofte radu
  • 7 篇 chun se young
  • 7 篇 tao dacheng
  • 7 篇 lin liang
  • 7 篇 lin dahua
  • 7 篇 zuo wangmeng
  • 7 篇 yan junjie
  • 7 篇 cheng ming-ming
  • 6 篇 van gool luc
  • 6 篇 chen xilin
  • 6 篇 tian qi
  • 6 篇 rohrbach marcus
  • 6 篇 ji rongrong
  • 6 篇 khan fahad shahb...

语言

  • 858 篇 英文
检索条件"任意字段=32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019"
858 条 记 录,以下是81-90 订阅
排序:
Convolutional Recurrent Network for Road Boundary Extraction  32
Convolutional Recurrent Network for Road Boundary Extraction
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Liang, Justin Homayounfar, Namdar Ma, Wei-Chiu Wang, Shenlong Urtasun, Raquel Uber Adv Technol Grp Pittsburgh PA 15201 USA Univ Toronto Toronto ON Canada MIT Cambridge MA 02139 USA
Creating high definition maps that contain precise information of static elements of the scene is of utmost importance for enabling self driving cars to drive safely. In this paper, we tackle the problem of drivable r... 详细信息
来源: 评论
Monocular Depth Estimation Using Relative Depth Maps  32
Monocular Depth Estimation Using Relative Depth Maps
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Lee, Jae-Han Kim, Chang-Su Korea Univ Seoul South Korea
We propose a novel algorithm for monocular depth estimation using relative depth maps. First, using a convolutional neural network, we estimate relative depths between pairs of regions, as well as ordinary depths, at ... 详细信息
来源: 评论
Panoptic Segmentation  32
Panoptic Segmentation
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kirillov, Alexander He, Kaiming Girshick, Ross Rother, Carsten Dollar, Piotr Facebook AI Res FAIR Austin TX 78719 USA Heidelberg Univ HCI IWR Heidelberg Germany
We propose and study a task we name panoptic segmentation (PS). Panoptic segmentation unifies the typically distinct tasks of semantic segmentation (assign a class label to each pixel) and instance segmentation (detec... 详细信息
来源: 评论
On zero-shot recognition of generic objects  32
On zero-shot recognition of generic objects
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Hascoet, Tristan Ariki, Yasuo Takiguchi, Tetsuya Kobe Univ Grad Sch Syst Informat Kobe Hyogo Japan
Many recent advances in computer vision are the result of a healthy competition among researchers on high quality, task-specific, benchmarks. After a decade of active research, zero-shot learning (ZSL) models accuracy... 详细信息
来源: 评论
Aggregation Cross-Entropy for Sequence recognition  32
Aggregation Cross-Entropy for Sequence Recognition
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Xie, Zecheng Huang, Yaoxiong Zhu, Yuanzhi Jin, Lianwen Liu, Yuliang Xie, Lele South China Univ Technol Guangzhou Guangdong Peoples R China
In this paper, we propose a novel method, aggregation cross-entropy (ACE), for sequence recognition from a brand new perspective. The ACE loss function exhibits competitive performance to CTC and the attention mechani... 详细信息
来源: 评论
Dichromatic Model Based Temporal Color Constancy for AC Light Sources  32
Dichromatic Model Based Temporal Color Constancy for AC Ligh...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Yoo, Jun-Sang Kim, Jong-Ok Korea Univ Sch Elect Engn Seoul South Korea
Existing dichromatic color constancy approach commonly requires a number of spatial pixels which have high specularity. In this paper, we propose a novel approach to estimate the illuminant chromaticity of AC light so... 详细信息
来源: 评论
QATM: Quality-Aware Template Matching For Deep Learning  32
QATM: Quality-Aware Template Matching For Deep Learning
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Cheng, Jiaxin Wu, Yue Abd-Almageed, Wael Natarajan, Premkumar USC Informat Sci Inst Marina Del Rey CA 90292 USA
Finding a template in a search image is one of the core problems many computer vision, such as semantic image semantic, image-to-GPS verification etc. We propose a novel quality-aware template matching method, QATM, w... 详细信息
来源: 评论
Multimodal Explanations by Predicting Counterfactuality in Videos  32
Multimodal Explanations by Predicting Counterfactuality in V...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Kanehira, Atsushi Takemoto, Kentaro Inayoshi, Sho Harada, Tatsuya Preferred Networks Tokyo Japan Univ Tokyo Tokyo Japan RIKEN Wako Saitama Japan
This study addresses generating counterfactual explanations with multimodal information. Our goal is not only to classify a video into a specific category, but also to provide explanations on why it is not categorized... 详细信息
来源: 评论
Local Features and Visual Words Emerge in Activations  32
Local Features and Visual Words Emerge in Activations
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Simeoni, Oriane Avrithis, Yannis Chum, Ondrej Univ Rennes INRIA CNRS IRISA Rennes France Czech Tech Univ VRG FEE Prague Czech Republic
We propose a novel method of deep spatial matching (DSM) for image retrieval. Initial ranking is based on image descriptors extracted from convolutional neural network activations by global pooling, as in recent state... 详细信息
来源: 评论
Neighbourhood Watch: Referring Expression Comprehension via Language-guided Graph Attention Networks  32
Neighbourhood Watch: Referring Expression Comprehension via ...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (cvpr)
作者: Wang, Peng Wu, Qi Cao, Jiewei Shen, Chunhua Gao, Lianli van den Hengel, Anton Univ Adelaide Australian Inst Machine Learning Adelaide SA Australia Univ Elect Sci & Technol China Chengdu Sichuan Peoples R China
The task in referring expression comprehension is to localize the object instance in an image described by a referring expression phrased in natural language. As a language-to-vision matching task, the key to this pro... 详细信息
来源: 评论