咨询与建议

限定检索结果

文献类型

  • 248 篇 会议
  • 18 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 274 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 工学
    • 217 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 32 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 63 篇 理学
    • 37 篇 数学
    • 21 篇 生物学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 24 篇 管理学
    • 20 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 22 篇 neural networks
  • 19 篇 pattern recognit...
  • 14 篇 deep learning
  • 11 篇 convolutional ne...
  • 10 篇 artificial intel...
  • 7 篇 face recognition
  • 7 篇 feature extracti...
  • 7 篇 supervised learn...
  • 7 篇 recurrent neural...
  • 5 篇 deep neural netw...
  • 5 篇 recurrent neural...
  • 5 篇 emotion recognit...
  • 4 篇 neurons
  • 4 篇 support vector m...
  • 4 篇 human computer i...
  • 4 篇 image segmentati...
  • 4 篇 data mining and ...
  • 4 篇 graph neural net...
  • 4 篇 density estimati...
  • 4 篇 recursive neural...

机构

  • 11 篇 univ ulm inst ne...
  • 5 篇 concordia univ d...
  • 5 篇 univ ulm dept ne...
  • 4 篇 institute of neu...
  • 4 篇 ulm univ inst ne...
  • 4 篇 univ siena dipar...
  • 3 篇 concordia univ d...
  • 3 篇 univ siena dipar...
  • 2 篇 univ london birk...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ siena siena
  • 2 篇 institute of neu...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 univ paris 06 la...
  • 2 篇 ulm university i...
  • 2 篇 heriot watt univ...
  • 2 篇 univ ulm inst ne...
  • 2 篇 univ hosp ulm de...

作者

  • 41 篇 schwenker friedh...
  • 12 篇 trentin edmondo
  • 10 篇 palm guenther
  • 8 篇 kestler hans a.
  • 8 篇 meudt sascha
  • 6 篇 el gayar neamat
  • 6 篇 riesen kaspar
  • 6 篇 thiam patrick
  • 5 篇 stadelmann thilo
  • 5 篇 kaechele markus
  • 5 篇 amirian mohammad...
  • 4 篇 burnaev evgeny
  • 4 篇 hernandez-espino...
  • 4 篇 hammer barbara
  • 4 篇 lausser ludwig
  • 4 篇 bianchini monica
  • 4 篇 friedhelm schwen...
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 4 篇 fischer andreas

语言

  • 273 篇 英文
  • 1 篇 中文
检索条件"任意字段=3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
274 条 记 录,以下是101-110 订阅
排序:
neural Decompiling of Tracr Transformers  11th
Neural Decompiling of Tracr Transformers
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Thurnherr, Hannes Riesen, Kaspar Univ Bern Inst Comp Sci CH-3012 Bern Switzerland
Recently, the transformer architecture has enabled substantial progress in many areas of pattern recognition and machine learning. However, as with other neural network models, there is currently no general method ava... 详细信息
来源: 评论
A Hidden Markov Model Based Approach for Facial Expression recognition in Image Sequences
A Hidden Markov Model Based Approach for Facial Expression R...
收藏 引用
4th workshop on artificial neural networks in pattern recognition
作者: Schmidt, Miriam Schels, Martin Schwenker, Friedhelm Univ Ulm Inst Neural Informat Proc D-89069 Ulm Germany
One of the important properties of hidden Markov models is the ability to model sequential dependencies. In this study the applicability of hidden Markov models for emotion recognition in image sequences is investigat... 详细信息
来源: 评论
Maximum Echo-State-Likelihood networks for Emotion recognition
Maximum Echo-State-Likelihood Networks for Emotion Recogniti...
收藏 引用
4th workshop on artificial neural networks in pattern recognition
作者: Trentin, Edmondo Scherer, Stefan Schwenker, Friedhelm Univ Siena Dipartimento Ingn Informazione Via Laterina 8 I-53100 Siena Italy Univ Ulm Inst Neural Informa Proc D-89069 Ulm Germany
Emotion recognition is a relevant task in human-computer interaction. Several pattern recognition and machine learning techniques have been applied so far in order to assign input audio and/or video sequences to speci... 详细信息
来源: 评论
Hybrid generative/discriminative classifier for unconstrained character recognition
Hybrid generative/discriminative classifier for unconstraine...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Prevost, L Oudot, L Moises, A Michel-Sendis, C Milgram, M Univ Paris 06 Lab Instruments & Syst Ile France Grp PARC F-75252 Paris France
Handwriting recognition for hand-held devices like PDAs requires very accurate and adaptive classifiers. It is such a complex classification problem that it is quite usual now to make co-operate several classification... 详细信息
来源: 评论
recognition of Sequences of Graphical patterns
Recognition of Sequences of Graphical Patterns
收藏 引用
4th workshop on artificial neural networks in pattern recognition
作者: Trentin, Edmondo Zhang, ShuJia Hagenbuchner, Markus DII Univ Siena V Roma 56 Siena Italy Univ Wollongong Wollongong NSW 2522 Australia
Several real-world problems (e.g., in bioinformatics/proteomics, or in recognition of video sequences) can be described as classification tasks over sequences of structured data, i.e. sequences of graphs, in a natural... 详细信息
来源: 评论
Trace and Detect Adversarial Attacks on CNNs Using Feature Response Maps  8th
Trace and Detect Adversarial Attacks on CNNs Using Feature R...
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Amirian, Mohammadreza Schwenker, Friedhelm Stadelmann, Thilo ZHAW Datalab & Sch Engn Winterthur Switzerland Ulm Univ Inst Neural Informat Proc Ulm Germany
The existence of adversarial attacks on convolutional neural networks (CNN) questions the fitness of such models for serious applications. The attacks manipulate an input image such that misclassification is evoked wh... 详细信息
来源: 评论
Inductive-Transductive Learning with Graph neural networks  8th
Inductive-Transductive Learning with Graph Neural Networks
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Rossi, Alberto Tiezzi, Matteo Dimitri, Giovanna Maria Bianchini, Monica Maggini, Marco Scarselli, Franco Univ Siena Dept Informat Engn & Math Siena Italy Univ Florence Dept Informat Engn Florence Italy Univ Cambridge Comp Lab Dept Comp Sci Cambridge England
Graphs are a natural choice to encode data in many real-world applications. In fact, a graph can describe a given pattern as a complex structure made up of parts (the nodes) and relationships between them (the edges).... 详细信息
来源: 评论
Facial expression recognition using game theory
Facial expression recognition using game theory
收藏 引用
5th INNS iapr TC 3 GIRPR workshop on artificial neural networks for pattern recognition, ANNPR 2012
作者: Roy, Kaushik Kamel, Mohamed S. Centre for Pattern Analysis and Machine Intelligence University of Waterloo ON Canada
Accurate detection of lip contour is important in many application areas, including biometric authentication, human computer interaction, and facial expression recognition. In this paper, we propose a new lip boundary... 详细信息
来源: 评论
Time series forecasting: Obtaining long term trends with self-organizing maps
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1795-1808页
作者: Simon, G Lendasse, A Cottrell, M Fort, JC Verleysen, M Univ Catholique Louvain DICE Machine Learning grp B-1348 Louvain Belgium Helsinki Univ Technol Lab Comp & Informat Sci Neural Networks Res Ctr FIN-02015 Espoo Finland Univ Paris 01 CNRS UMR 8595 Samos Matisse F-75634 Paris France Univ Toulouse 3 CNRS C55830 Lab Stat & Probabil F-31062 Toulouse France
Kohonen self-organisation maps are a well know classification tool, commonly used in a wide variety of problems, but with limited applications in time series forecasting context. In this paper, we propose a forecastin... 详细信息
来源: 评论
Video and Audio Data Extraction for Retrieval, Ranking and Recapitulation (VADER3)  8th
Video and Audio Data Extraction for Retrieval, Ranking and R...
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Frinken, Volkmar Ravindran, Satish Palakodety, Shriphani Jayachandran, Guha Powar, Nilesh Onu Technol San Jose CA 95129 USA Univ Dayton Res Inst Dayton OH 45469 USA
With advances in neural network architectures for computer vision and language processing, multiple modalities of a video can be used for complex content analysis. Here, we propose an architecture that combines visual... 详细信息
来源: 评论