咨询与建议

限定检索结果

文献类型

  • 248 篇 会议
  • 18 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 274 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 工学
    • 217 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 32 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 63 篇 理学
    • 37 篇 数学
    • 21 篇 生物学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 24 篇 管理学
    • 20 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 22 篇 neural networks
  • 19 篇 pattern recognit...
  • 14 篇 deep learning
  • 11 篇 convolutional ne...
  • 10 篇 artificial intel...
  • 7 篇 face recognition
  • 7 篇 feature extracti...
  • 7 篇 supervised learn...
  • 7 篇 recurrent neural...
  • 5 篇 deep neural netw...
  • 5 篇 recurrent neural...
  • 5 篇 emotion recognit...
  • 4 篇 neurons
  • 4 篇 support vector m...
  • 4 篇 human computer i...
  • 4 篇 image segmentati...
  • 4 篇 data mining and ...
  • 4 篇 graph neural net...
  • 4 篇 density estimati...
  • 4 篇 recursive neural...

机构

  • 11 篇 univ ulm inst ne...
  • 5 篇 concordia univ d...
  • 5 篇 univ ulm dept ne...
  • 4 篇 institute of neu...
  • 4 篇 ulm univ inst ne...
  • 4 篇 univ siena dipar...
  • 3 篇 concordia univ d...
  • 3 篇 univ siena dipar...
  • 2 篇 univ london birk...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ siena siena
  • 2 篇 institute of neu...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 univ paris 06 la...
  • 2 篇 ulm university i...
  • 2 篇 heriot watt univ...
  • 2 篇 univ ulm inst ne...
  • 2 篇 univ hosp ulm de...

作者

  • 41 篇 schwenker friedh...
  • 12 篇 trentin edmondo
  • 10 篇 palm guenther
  • 8 篇 kestler hans a.
  • 8 篇 meudt sascha
  • 6 篇 el gayar neamat
  • 6 篇 riesen kaspar
  • 6 篇 thiam patrick
  • 5 篇 stadelmann thilo
  • 5 篇 kaechele markus
  • 5 篇 amirian mohammad...
  • 4 篇 burnaev evgeny
  • 4 篇 hernandez-espino...
  • 4 篇 hammer barbara
  • 4 篇 lausser ludwig
  • 4 篇 bianchini monica
  • 4 篇 friedhelm schwen...
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 4 篇 fischer andreas

语言

  • 273 篇 英文
  • 1 篇 中文
检索条件"任意字段=3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
274 条 记 录,以下是131-140 订阅
排序:
Anomaly pattern recognition with Privileged Information for Sensor Fault Detection  8th
Anomaly Pattern Recognition with Privileged Information for ...
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Smolyakov, Dmitry Sviridenko, Nadezda Burikov, Evgeny Burnaev, Evgeny Skolkovo Inst Sci & Technol Moscow Moscow Region Russia PO AO Minimaks 94 Moscow Russia
Detection of malfunction sensors is an important problem in the field of Internet of Things. One of the classical approaches to recognize anomalous patterns in sensor data is to use anomaly detection techniques based ... 详细信息
来源: 评论
A new multi-class fuzzy support vector machine algorithm  6
收藏 引用
6th iapr TC3 International workshop on artificial neural networks for pattern recognition, ANNPR 2014
作者: Schwenker, Friedhelm Frey, Markus Glodek, Michael Kächele, Markus Meudt, Sascha Schels, Martin Schmidt, Miriam Ulm University Institute of Neural Information Processing Ulm89069 Germany
In this paper a novel approach to fuzzy support vector machines (SVM) in multi-class classification problems is presented. The proposed algorithm has the property to benefit from fuzzy labeled data in the training pha... 详细信息
来源: 评论
Majority-class aware support vector domain oversampling for imbalanced classification problems  6
收藏 引用
6th iapr TC3 International workshop on artificial neural networks for pattern recognition, ANNPR 2014
作者: Kächele, Markus Thiam, Patrick Palm, Günther Schwenker, Friedhelm Institute of Neural Information Processing Ulm University James-Franck-Ring Ulm89081 Germany
In this work, a method is presented to overcome the difficulties posed by imbalanced classification problems. The proposed algorithm fits a data description to the minority class but in contrast to many other algorith... 详细信息
来源: 评论
Comparative Study of Deep Learning Models in Melanoma Detection  11th
Comparative Study of Deep Learning Models in Melanoma Detect...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Haghshenas, Farnaz Krzyzak, Adam Osowski, Stanislaw Concordia Univ Dept Comp Sci & Software Engn Montreal PQ H3G 1M8 Canada Warsaw Univ Technol Fac Elect Engn Pl Politech 1 PL-00661 Warsaw Poland
The increasing number of skin cancers underscores the critical importance of early detection and accurate classification to improve treatment outcomes. Melanoma, a malignant skin cancer, has the highest mortality rate... 详细信息
来源: 评论
Active Learning for Speech Event Detection in HCI  7th
Active Learning for Speech Event Detection in HCI
收藏 引用
7th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Thiam, Patrick Meudt, Sascha Schwenker, Friedhelm Palm, Guenther Univ Ulm Inst Neural Informat Proc D-89081 Ulm Germany
In this work, a pool-based active learning approach combining outlier detection methods with uncertainty sampling is proposed for speech event detection. Events in this case are regarded as atypical utterances (e.g. l... 详细信息
来源: 评论
Graph Augmentation for neural networks Using Matching-Graphs  10th
Graph Augmentation for Neural Networks Using Matching-Graphs
收藏 引用
10th iapr TC3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: Fuchs, Mathias Riesen, Kaspar Univ Bern Inst Comp Sci CH-3012 Bern Switzerland Univ Appl Sci Northwestern Inst Informat Syst CH-4600 Olten Switzerland
Both data access and data collection have become increasingly easy over the past decade, leading to rapid developments in many areas of intelligent information processing. In some cases, however, the amount of data is... 详细信息
来源: 评论
artificial neural networks in pattern recognition  1
收藏 引用
丛书名: Lecture Notes in Computer Science
1000年
作者: Nadia Mana Friedhelm Schwenker Edmondo Trentin
This book constitutes the refereed proceedings of the 5th INNS iapr TC3 GIRPR International workshop on artificial neural networks in pattern recognition, ANNPR 2012, held in Trento, Italy, in September 2012. The 21 r... 详细信息
来源: 评论
Disparity using feature points in multi scale  9th
收藏 引用
Joint iapr 9th International workshop on Structural and Syntactic pattern recognition, SSPR 2002 and 4th International workshop on Statistical Techniques in pattern recognition, SPR 2002
作者: Ulusoy, Ilkay Hancock, Edwin R. Halici, Ugur Computer Vision and Artificial Neural Networks Lab Middle East Technical University Ankara Turkey Department of Computer Science Uni versity of York YorkY01 5DD United Kingdom
In this paper we describe a statistical framework for binocular disparity estimation. We use a bank of Gabor filters to compute multiscale phase signatures at detected feature points. Using a von Mises distribution, w... 详细信息
来源: 评论
artificial neural networks in pattern recognition  1
收藏 引用
丛书名: Lecture Notes in Computer Science
1000年
作者: Neamat El Gayar Edmondo Trentin Mirco Ravanelli Hazem Abbas
This book constitutes the refereed proceedings of the 10th iapr TC3 International workshop on artificial neural networks in pattern recognition, ANNPR 2022, held in Dubai, UAE, in November 2022. The 16 revised full pa... 详细信息
来源: 评论
Manifold Learning Regression with Non-stationary Kernels  8th
Manifold Learning Regression with Non-stationary Kernels
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Kuleshov, Alexander Bernstein, Alexander Burnaev, Evgeny Skolkovo Inst Sci & Technol Skolkovo Innovat Ctr 3 Nobel St Moscow 121205 Russia
Nonlinear multi-output regression problem is to construct a predictive function which estimates an unknown smooth mapping from q-dimensional inputs to m-dimensional outputs based on a training data set consisting of g... 详细信息
来源: 评论