咨询与建议

限定检索结果

文献类型

  • 248 篇 会议
  • 18 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 274 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 工学
    • 217 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 32 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 63 篇 理学
    • 37 篇 数学
    • 21 篇 生物学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 24 篇 管理学
    • 20 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 22 篇 neural networks
  • 19 篇 pattern recognit...
  • 14 篇 deep learning
  • 11 篇 convolutional ne...
  • 10 篇 artificial intel...
  • 7 篇 face recognition
  • 7 篇 feature extracti...
  • 7 篇 supervised learn...
  • 7 篇 recurrent neural...
  • 5 篇 deep neural netw...
  • 5 篇 recurrent neural...
  • 5 篇 emotion recognit...
  • 4 篇 neurons
  • 4 篇 support vector m...
  • 4 篇 human computer i...
  • 4 篇 image segmentati...
  • 4 篇 data mining and ...
  • 4 篇 graph neural net...
  • 4 篇 density estimati...
  • 4 篇 recursive neural...

机构

  • 11 篇 univ ulm inst ne...
  • 5 篇 concordia univ d...
  • 5 篇 univ ulm dept ne...
  • 4 篇 institute of neu...
  • 4 篇 ulm univ inst ne...
  • 4 篇 univ siena dipar...
  • 3 篇 concordia univ d...
  • 3 篇 univ siena dipar...
  • 2 篇 univ london birk...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ siena siena
  • 2 篇 institute of neu...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 univ paris 06 la...
  • 2 篇 ulm university i...
  • 2 篇 heriot watt univ...
  • 2 篇 univ ulm inst ne...
  • 2 篇 univ hosp ulm de...

作者

  • 41 篇 schwenker friedh...
  • 12 篇 trentin edmondo
  • 10 篇 palm guenther
  • 8 篇 kestler hans a.
  • 8 篇 meudt sascha
  • 6 篇 el gayar neamat
  • 6 篇 riesen kaspar
  • 6 篇 thiam patrick
  • 5 篇 stadelmann thilo
  • 5 篇 kaechele markus
  • 5 篇 amirian mohammad...
  • 4 篇 burnaev evgeny
  • 4 篇 hernandez-espino...
  • 4 篇 hammer barbara
  • 4 篇 lausser ludwig
  • 4 篇 bianchini monica
  • 4 篇 friedhelm schwen...
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 4 篇 fischer andreas

语言

  • 273 篇 英文
  • 1 篇 中文
检索条件"任意字段=3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
274 条 记 录,以下是141-150 订阅
排序:
Graph Augmentation for neural networks Using Matching-Graphs  10th
Graph Augmentation for Neural Networks Using Matching-Graphs
收藏 引用
10th iapr TC3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: Fuchs, Mathias Riesen, Kaspar Univ Bern Inst Comp Sci CH-3012 Bern Switzerland Univ Appl Sci Northwestern Inst Informat Syst CH-4600 Olten Switzerland
Both data access and data collection have become increasingly easy over the past decade, leading to rapid developments in many areas of intelligent information processing. In some cases, however, the amount of data is... 详细信息
来源: 评论
Deep Learning in the Wild  8th
Deep Learning in the Wild
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Stadelmann, Thilo Amirian, Mohammadreza Arabaci, Ismail Arnold, Marek Duivesteijn, Gilbert Francois Elezi, Ismail Geiger, Melanie Lorwald, Stefan Meier, Benjamin Bruno Rombach, Katharina Tuggener, Lukas ZHAW Datalab Winterthur Switzerland Sch Engn Winterthur Switzerland Ulm Univ Inst Neural Informat Proc Ulm Germany ARGUS DATA INSIGHTS Schweiz AG Zurich Switzerland Deep Impact AG Winterthur Switzerland Ca Foscari Univ Venice DAIS Venice Italy Univ Neuchatel Inst Informat Neuchatel Switzerland PricewaterhouseCoopers AG Zurich Switzerland IDSIA Dalle Molle Inst Artificial Intelligence Manno Switzerland
Deep learning with neural networks is applied by an increasing number of people outside of classic research environments, due to the vast success of the methodology on a wide range of machine perception tasks. While t... 详细信息
来源: 评论
Pitfalls in Processing Infinite-Length Sequences with Popular Approaches for Sequential Data  11th
Pitfalls in Processing Infinite-Length Sequences with Popula...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Casoni, Michele Guidi, Tommaso Tiezzi, Matteo Betti, Alessandro Gori, Marco Melacci, Stefano Univ Siena DIISM I-52100 Siena Italy IMT Scuola Alti Studi I-55100 Lucca Italy
One of the enduring challenges for the Machine Learning community is developing models that can process and learn from very long data sequences. Transformer-based models and Recurrent neural networks (RNNs) have excel... 详细信息
来源: 评论
Kernel estimators and mixture models in artificial neural networks
Kernel estimators and mixture models in artificial neural ne...
收藏 引用
Proceedings of the 3rd workshop on neural networks: Academic/Industrial/NASA/Defense
作者: Priebe, Carey E. Marchette, David J. Rogers, George W. Solka, Jeffrey L. Naval Surface Warfare Cent Dahlgren United States
For many pattern recognition problems, including unsupervised learning applications, a direct probability density estimate is more powerful than a posterior probability estimate. Kernel estimation and finite mixture m... 详细信息
来源: 评论
Medical Deepfake Detection using 3-Dimensional neural Learning  10th
Medical Deepfake Detection using 3-Dimensional Neural Learni...
收藏 引用
10th iapr TC3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: Sharafudeen, Misaj Chandra, S. S. Vinod Univ Kerala Dept Comp Sci Thiruvananthapuram Kerala India
In recent years, Generative Adversarial networks (GAN) have underlined the necessity for exercising caution in trusting digital information. Injection and removal of tumorous nodules from medical imaging modalities is... 详细信息
来源: 评论
artificial neural networks in pattern recognition  1
收藏 引用
丛书名: Lecture Notes in Computer Science
1000年
作者: Luca Pancioni Edmondo Trentin Friedhelm Schwenker
This book constitutes the refereed proceedings of the 8th iapr TC3 International workshop on artificial neural networks in pattern recognition, ANNPR 2018, held in Siena, Italy, in September 2018.;The 29 rev... 详细信息
来源: 评论
Disparity using feature points in multi scale  9th
收藏 引用
Joint iapr 9th International workshop on Structural and Syntactic pattern recognition, SSPR 2002 and 4th International workshop on Statistical Techniques in pattern recognition, SPR 2002
作者: Ulusoy, Ilkay Hancock, Edwin R. Halici, Ugur Computer Vision and Artificial Neural Networks Lab Middle East Technical University Ankara Turkey Department of Computer Science Uni versity of York YorkY01 5DD United Kingdom
In this paper we describe a statistical framework for binocular disparity estimation. We use a bank of Gabor filters to compute multiscale phase signatures at detected feature points. Using a von Mises distribution, w... 详细信息
来源: 评论
Manifold Learning Regression with Non-stationary Kernels  8th
Manifold Learning Regression with Non-stationary Kernels
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Kuleshov, Alexander Bernstein, Alexander Burnaev, Evgeny Skolkovo Inst Sci & Technol Skolkovo Innovat Ctr 3 Nobel St Moscow 121205 Russia
Nonlinear multi-output regression problem is to construct a predictive function which estimates an unknown smooth mapping from q-dimensional inputs to m-dimensional outputs based on a training data set consisting of g... 详细信息
来源: 评论
An improved handwritten Chinese character recognition system using support vector machine
An improved handwritten Chinese character recognition system...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Dong, JX Krzyzak, A Suen, CY Ctr Pattern Regcognit & Machine Intelligence Montreal PQ H3G 1M8 Canada Concordia Univ Dept Comp Sci & Software Engn Montreal PQ H3G 1M8 Canada
This paper describes several techniques improving a Chinese character recognition system. Enhanced nonlinear normalization, feature extraction and tuning kernel parameters of support vector machine on a large data set... 详细信息
来源: 评论
Objectness Scoring and Detection Proposals in Forward-Looking Sonar Images with Convolutional neural networks  7th
Objectness Scoring and Detection Proposals in Forward-Lookin...
收藏 引用
7th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Valdenegro-Toro, Matias Heriot Watt Univ Sch Engn & Phys Sci Ocean Syst Lab Edinburgh EH14 4AS Midlothian Scotland
Forward-looking sonar can capture high resolution images of underwater scenes, but their interpretation is complex. Generic object detection in such images has not been solved, specially in cases of small and unknown ... 详细信息
来源: 评论