咨询与建议

限定检索结果

文献类型

  • 248 篇 会议
  • 18 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 274 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 工学
    • 217 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 32 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 63 篇 理学
    • 37 篇 数学
    • 21 篇 生物学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 24 篇 管理学
    • 20 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 22 篇 neural networks
  • 19 篇 pattern recognit...
  • 14 篇 deep learning
  • 11 篇 convolutional ne...
  • 10 篇 artificial intel...
  • 7 篇 face recognition
  • 7 篇 feature extracti...
  • 7 篇 supervised learn...
  • 7 篇 recurrent neural...
  • 5 篇 deep neural netw...
  • 5 篇 recurrent neural...
  • 5 篇 emotion recognit...
  • 4 篇 neurons
  • 4 篇 support vector m...
  • 4 篇 human computer i...
  • 4 篇 image segmentati...
  • 4 篇 data mining and ...
  • 4 篇 graph neural net...
  • 4 篇 density estimati...
  • 4 篇 recursive neural...

机构

  • 11 篇 univ ulm inst ne...
  • 5 篇 concordia univ d...
  • 5 篇 univ ulm dept ne...
  • 4 篇 institute of neu...
  • 4 篇 ulm univ inst ne...
  • 4 篇 univ siena dipar...
  • 3 篇 concordia univ d...
  • 3 篇 univ siena dipar...
  • 2 篇 univ london birk...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ siena siena
  • 2 篇 institute of neu...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 univ paris 06 la...
  • 2 篇 ulm university i...
  • 2 篇 heriot watt univ...
  • 2 篇 univ ulm inst ne...
  • 2 篇 univ hosp ulm de...

作者

  • 41 篇 schwenker friedh...
  • 12 篇 trentin edmondo
  • 10 篇 palm guenther
  • 8 篇 kestler hans a.
  • 8 篇 meudt sascha
  • 6 篇 el gayar neamat
  • 6 篇 riesen kaspar
  • 6 篇 thiam patrick
  • 5 篇 stadelmann thilo
  • 5 篇 kaechele markus
  • 5 篇 amirian mohammad...
  • 4 篇 burnaev evgeny
  • 4 篇 hernandez-espino...
  • 4 篇 hammer barbara
  • 4 篇 lausser ludwig
  • 4 篇 bianchini monica
  • 4 篇 friedhelm schwen...
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 4 篇 fischer andreas

语言

  • 273 篇 英文
  • 1 篇 中文
检索条件"任意字段=3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
274 条 记 录,以下是141-150 订阅
排序:
Sequence-to-Sequence CNN-BiLSTM Based Glottal Closure Instant Detection from Raw Speech  10th
Sequence-to-Sequence CNN-BiLSTM Based Glottal Closure Instan...
收藏 引用
10th iapr TC3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: Matousek, Jindrich Tihelka, Daniel Univ West Bohemia Fac Appl Sci Dept Cybernet Plzen Czech Republic Univ West Bohemia New Technol Informat Soc NTIS Fac Sci Appl Plzen Czech Republic
In this paper, we propose to frame glottal closure instant (GCI) detection from raw speech as a sequence-to-sequence prediction problem and to explore the potential of recurrent neural networks (RNNs) to handle this p... 详细信息
来源: 评论
Objectness Scoring and Detection Proposals in Forward-Looking Sonar Images with Convolutional neural networks  7th
Objectness Scoring and Detection Proposals in Forward-Lookin...
收藏 引用
7th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Valdenegro-Toro, Matias Heriot Watt Univ Sch Engn & Phys Sci Ocean Syst Lab Edinburgh EH14 4AS Midlothian Scotland
Forward-looking sonar can capture high resolution images of underwater scenes, but their interpretation is complex. Generic object detection in such images has not been solved, specially in cases of small and unknown ... 详细信息
来源: 评论
A Study on the Autonomous Detection of Impact Craters  10th
A Study on the Autonomous Detection of Impact Craters
收藏 引用
10th iapr TC3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: Aburaed, Nour Alsaad, Mina Al Mansoori, Saeed Al-Ahmad, Hussain Univ Dubai Dubai U Arab Emirates Mohammed Bin Rashid Space Ctr Dubai U Arab Emirates
Planet surface studies is one of the most popular research areas in planetary science, as it is useful to attain information about a planet's history and geology without directly landing on its surface. Autonomous... 详细信息
来源: 评论
An empirical comparison of feature reduction methods in the context of microarray data classification
收藏 引用
2nd iapr workshop on artificial neural networks in pattern recognition
作者: Kestler, Hans A. Muessel, Christoph Univ Ulm Dept Neural Informat Proc D-89069 Ulm Germany Univ Hosp Ulm Dept Internal Med 1 D-89081 Ulm Germany
The differentiation between cancerous and benign processes in the body often poses a difficult diagnostic problem in the clinical setting while being of major importance for the treatment of patients. Measuring the ex... 详细信息
来源: 评论
Grayscale images and RGB video: Compression by morphological neural network
Grayscale images and RGB video: Compression by morphological...
收藏 引用
5th INNS iapr TC 3 GIRPR workshop on artificial neural networks for pattern recognition, ANNPR 2012
作者: De Souza, Osvaldo Cortez, Paulo César Da Silva, Francisco A. T. F. Federal University of Ceará DETI Fortaleza Brazil National Institute for Space Research ROEN Eusébio Brazil
This paper investigates image and RGB video compression by a supervised morphological neural network. This network was originally designed to compress grayscale image and was then extended to RGB video. It supports tw... 详细信息
来源: 评论
F-Measure Curves for Visualizing Classifier Performance with Imbalanced Data  8th
F-Measure Curves for Visualizing Classifier Performance with...
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Soleymani, Roghayeh Granger, Eric Fumera, Giorgio Univ Quebec Ecole Technol Super Lab Imagerie Vis & Intelligence Artificielle Montreal PQ Canada Univ Cagliari Dept Elect & Elect Engn Pattern Recognit & Applicat Lab Cagliari Italy
Training classifiers using imbalanced data is a challenging problem in many real-world recognition applications due in part to the bias in performance that occur for: (1) classifiers that are often optimized and compa... 详细信息
来源: 评论
On-line handwritten character recognition by a hybrid method based on neural networks and pattern matching  3rd
收藏 引用
3rd International workshop on artificial neural networks, IWANN 1995
作者: Cho, Jung-Wook Lee, Soo-Young Park, Cheol Hoon Computation and Neural Systems Laboratory Department of Electrical Engineering Korea Advanced Institute of Science and Technology 373-1 Kusung-Dong Yusung-Gu Taejon305-701 Korea Republic of
A hybrid system is developed for on-line recognition of hand-written Korean characters. Each syllable consists of several Korean alphabets and is written in a rectangular box to result in a 2-dimensional compositions ... 详细信息
来源: 评论
Generative Plant Growth Simulation from Sequence-Informed Environmental Conditions  11th
Generative Plant Growth Simulation from Sequence-Informed En...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Debbagh, Mohamed Liu, Yixue Zheng, Zhouzhou Jiang, Xintong Sun, Shangpeng Lefsrud, Mark McGill Univ Montreal PQ H3A 0G4 Canada Northwest A&F Univ Coll Mech & Elect Engn Yangling 712100 Shaanxi Peoples R China
A plant growth simulation can be characterized as a reconstructed visual representation of a plant or plant system. The phenotypic characteristics and plant structures are controlled by the scene environment and other... 详细信息
来源: 评论
3rd International workshop on Reproducible Research in pattern recognition, RRPR 2021
3rd International Workshop on Reproducible Research in Patte...
收藏 引用
3rd International workshop on Reproducible Research in pattern recognition, RRPR 2021
The proceedings contain 13 papers. The special focus in this conference is on Reproducible Research in pattern recognition. The topics include: Reproducibility Aspects of Crack Detection as a Weakly-Supervised Problem...
来源: 评论
pattern Classification Using a Penalized Likelihood Method
Pattern Classification Using a Penalized Likelihood Method
收藏 引用
4th workshop on artificial neural networks in pattern recognition
作者: Al-Ani, Ahmed Atiya, Amir F. Univ Technol Sydney Fac Engn & Informat Technol Sydney NSW 2007 Australia Cairo Univ Dept Comp Engn Giza Egypt
Penalized likelihood is a well-known theoretically justified approach that has recently attracted attention by the machine learning society. The objective function of the Penalized likelihood consists of the log likel... 详细信息
来源: 评论