咨询与建议

限定检索结果

文献类型

  • 248 篇 会议
  • 18 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 269 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 工学
    • 217 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 32 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 63 篇 理学
    • 37 篇 数学
    • 21 篇 生物学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 24 篇 管理学
    • 20 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 22 篇 neural networks
  • 15 篇 pattern recognit...
  • 14 篇 deep learning
  • 11 篇 convolutional ne...
  • 7 篇 face recognition
  • 7 篇 feature extracti...
  • 7 篇 supervised learn...
  • 7 篇 recurrent neural...
  • 5 篇 deep neural netw...
  • 5 篇 recurrent neural...
  • 5 篇 emotion recognit...
  • 5 篇 artificial intel...
  • 4 篇 neurons
  • 4 篇 support vector m...
  • 4 篇 human computer i...
  • 4 篇 image segmentati...
  • 4 篇 graph neural net...
  • 4 篇 density estimati...
  • 4 篇 recursive neural...
  • 4 篇 character recogn...

机构

  • 11 篇 univ ulm inst ne...
  • 5 篇 concordia univ d...
  • 5 篇 univ ulm dept ne...
  • 4 篇 institute of neu...
  • 4 篇 ulm univ inst ne...
  • 4 篇 univ siena dipar...
  • 3 篇 concordia univ d...
  • 3 篇 univ siena dipar...
  • 2 篇 univ london birk...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ siena siena
  • 2 篇 institute of neu...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 univ paris 06 la...
  • 2 篇 ulm university i...
  • 2 篇 heriot watt univ...
  • 2 篇 univ ulm inst ne...
  • 2 篇 univ hosp ulm de...

作者

  • 41 篇 schwenker friedh...
  • 12 篇 trentin edmondo
  • 10 篇 palm guenther
  • 8 篇 kestler hans a.
  • 8 篇 meudt sascha
  • 6 篇 el gayar neamat
  • 6 篇 riesen kaspar
  • 6 篇 thiam patrick
  • 5 篇 stadelmann thilo
  • 5 篇 kaechele markus
  • 5 篇 amirian mohammad...
  • 4 篇 burnaev evgeny
  • 4 篇 hernandez-espino...
  • 4 篇 hammer barbara
  • 4 篇 lausser ludwig
  • 4 篇 bianchini monica
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 4 篇 fischer andreas
  • 4 篇 palm günther

语言

  • 268 篇 英文
  • 1 篇 中文
检索条件"任意字段=3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
269 条 记 录,以下是171-180 订阅
排序:
A neural network approach to similarity learning
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: Melacci, Stefano Sarti, Lorenzo Maggini, Marco Bianchini, Monica Univ Siena DII I-53100 Siena Italy
This paper presents a novel neural network model, called similarity neural network (SNN), designed to learn similarity measures for pairs of patterns. The model guarantees to compute a non negative and symmetric measu... 详细信息
来源: 评论
Partial discriminative training of neural networks for classification of overlapping classes
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: Liu, Cheng-Lin Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit NLPR Beijing 100190 Peoples R China
In applications such as character recognition, some classes are heavily overlapped but are not necessarily to be separated. For classification of such overlapping classes, either discriminating between them or merging... 详细信息
来源: 评论
Mining software aging patterns by artificial neural networks
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: El-Shishiny, Hisham Deraz, Sally Bahy, Omar IBM Cairo Technol Dev Ctr Giza Egypt
This paper investigates the use of artificial neural networks (ANN) to mine and predict;patterns in software aging phenomenon. We analyze resource usage data collected on a typical long-running software system: a web ... 详细信息
来源: 评论
The mixture of neural networks as ensemble combiner
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: Fernandez-Redondo, Mercedes Torres-Sospedra, Joaquin Hernandez-Espinosa, Carlos Univ Jaume 1 Dept Ingn & Ciencia Computadores Castellon de La Plana Spain
In this paper we propose two new ensemble combiners based on the Mixture of neural networks model. In our experiments, we have applied two different network architectures on the methods based on the Mixture of neural ... 详细信息
来源: 评论
Sentence understanding and learning of new words with large-scale neural networks
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: Markert, Heiner Kayikci, Zoehre Kara Palm, Guenther Univ Ulm Inst Neural Informat Proc D-89069 Ulm Germany
We have implemented a speech command system which can understand simple command sentences like "Bot lift ball" or "Bot go table" using hidden Markov models (HMMs) and associative memories with spar... 详细信息
来源: 评论
Experiments with supervised fuzzy LVQ
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: Thiel, Christian Sonntag, Britta Schwenker, Friedhelm Univ Ulm Inst Neural Informat Proc D-89069 Ulm Germany
Prototype based classifiers so far can only work with hard labels on the training data. In order to allow for soft labels as input label and answer, we enhanced the original LVQ algorithm. The key idea is adapting the... 详细信息
来源: 评论
neural approximation of Monte Carlo policy evaluation deployed in Connect Four
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: Fausser, Stefan Schwenker, Friedhelm Univ Ulm Inst Neural Informat Proc D-89069 Ulm Germany
To win a board-game or more generally to gain something specific in a given Markov-environment, it is most important to have a policy in cboosing and taking actions that leads to one of several qualitative good states... 详细信息
来源: 评论
Researching on Multi-Net systems based on Stacked Generalization
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: Hernandez-Espinosa, Carlos Torres-Sospedra, Joaquin Fernandez-Redondo, Mercedes Univ Jaume 1 Dept Ingn & Ciencia Computadores Castellon de La Plana Spain
Among the approaches to build a Multi-Net system, Stacked Generalization is a well-known model. The classification system is divided into two steps. Firstly, the level-O generalizers are built using the original input... 详细信息
来源: 评论
Fuzzy evolutionary probabilistic neural networks
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: Georgiou, V. L. Alevizos, Ph. D. Vrahatis, M. N. Univ Patras Dept Math Univ Patras Artificial Intelligence Res Ctr UPAIR Computat Intelligence Lab CI Lab GR-26110 Patras Greece
One of the most frequently used models for classification tasks is the Probabilistic neural Network. Several improvements of the Probabilistic neural Network have been proposed such as the Evolutionary Probabilistic N... 详细信息
来源: 评论
Probabilistic models based on the Π-sigmoid distribution
收藏 引用
3rd iapr workshop on artificial neural networks in pattern recognition
作者: Alivanoglou, Anastasios Likas, Aristidis Univ Ioannina Dept Comp Sci GR-45110 Ioannina Greece
Mixture models constitute a popular type of probabilistic neural networks which model the density of a dataset using a convex combination of statistical distributions, with the Gaussian distribution being the one most... 详细信息
来源: 评论