咨询与建议

限定检索结果

文献类型

  • 248 篇 会议
  • 18 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 274 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 工学
    • 217 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 32 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 63 篇 理学
    • 37 篇 数学
    • 21 篇 生物学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 24 篇 管理学
    • 20 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 22 篇 neural networks
  • 19 篇 pattern recognit...
  • 14 篇 deep learning
  • 11 篇 convolutional ne...
  • 10 篇 artificial intel...
  • 7 篇 face recognition
  • 7 篇 feature extracti...
  • 7 篇 supervised learn...
  • 7 篇 recurrent neural...
  • 5 篇 deep neural netw...
  • 5 篇 recurrent neural...
  • 5 篇 emotion recognit...
  • 4 篇 neurons
  • 4 篇 support vector m...
  • 4 篇 human computer i...
  • 4 篇 image segmentati...
  • 4 篇 data mining and ...
  • 4 篇 graph neural net...
  • 4 篇 density estimati...
  • 4 篇 recursive neural...

机构

  • 11 篇 univ ulm inst ne...
  • 5 篇 concordia univ d...
  • 5 篇 univ ulm dept ne...
  • 4 篇 institute of neu...
  • 4 篇 ulm univ inst ne...
  • 4 篇 univ siena dipar...
  • 3 篇 concordia univ d...
  • 3 篇 univ siena dipar...
  • 2 篇 univ london birk...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ siena siena
  • 2 篇 institute of neu...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 univ paris 06 la...
  • 2 篇 ulm university i...
  • 2 篇 heriot watt univ...
  • 2 篇 univ ulm inst ne...
  • 2 篇 univ hosp ulm de...

作者

  • 41 篇 schwenker friedh...
  • 12 篇 trentin edmondo
  • 10 篇 palm guenther
  • 8 篇 kestler hans a.
  • 8 篇 meudt sascha
  • 6 篇 el gayar neamat
  • 6 篇 riesen kaspar
  • 6 篇 thiam patrick
  • 5 篇 stadelmann thilo
  • 5 篇 kaechele markus
  • 5 篇 amirian mohammad...
  • 4 篇 burnaev evgeny
  • 4 篇 hernandez-espino...
  • 4 篇 hammer barbara
  • 4 篇 lausser ludwig
  • 4 篇 bianchini monica
  • 4 篇 friedhelm schwen...
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 4 篇 fischer andreas

语言

  • 273 篇 英文
  • 1 篇 中文
检索条件"任意字段=3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
274 条 记 录,以下是11-20 订阅
排序:
Deep Multi-label Classification of Personality with Handwriting Analysis  11th
Deep Multi-label Classification of Personality with Handwrit...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Shamsabad, Marzieh Adeli Suen, Ching Yee Concordia Univ Ctr Pattern Recognit & Machine Intelligence CENPA Montreal PQ H3G 1M8 Canada
Handwriting analysis has traditionally been used to infer personality traits from the stylistic features of writing. With advances in machine learning, the accuracy and applicability of these analyses have significant... 详细信息
来源: 评论
A Metaheuristic Optimization Based Deep Feature Selection for Oral Cancer Classification  11th
A Metaheuristic Optimization Based Deep Feature Selection fo...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Halder, Akash Laha, Sugata Bandyopadhyay, Saptarshi Schwenker, Friedhelm Sarkar, Ram Jadavpur Univ Dept Comp Sci & Engn Kolkata India Ulm Univ Inst Neural Informat Proc Ulm Germany
Oral cancer is a serious hazard to world health, with many new cases recorded each year. Researchers have been concentrating on developing medical image analysis-based computer-aided diagnostic (CAD) systems for oral ... 详细信息
来源: 评论
A Novel Representation of Graphical patterns for Graph Convolution networks  10th
A Novel Representation of Graphical Patterns for Graph Convo...
收藏 引用
10th iapr TC3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: Benini, Marco Bongini, Pietro Trentin, Edmondo Univ Siena DIISM Siena Italy
In the context of machine learning on graph data, graph deep learning has captured the attention of many researcher. Due to the promising results of deep learning models in the most diverse fields of application, grea... 详细信息
来源: 评论
Palmprint Classification via Filter Faces and Feature Extraction  11th
Palmprint Classification via Filter Faces and Feature Extrac...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Chen, Guang Yi Krzyzak, Adam Valev, Ventzeslav Concordia Univ Dept Comp Sci & Software Engn Montreal PQ H3G 1M8 Canada Bulgarian Acad Sci Inst Math & Informat Sofia 1113 Bulgaria
Palmprint classification is a popular method for today's biometrics, and it can be combined with iris or fingerprint to identify a person's identification. In this paper, we propose a novel method for palmprin... 详细信息
来源: 评论
Explaining Network Decision Provides Insights on the Causal Interaction Between Brain Regions in a Motor Imagery Task  11th
Explaining Network Decision Provides Insights on the Causal ...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Borra, Davide Ravanelli, Mirco Univ Bologna Dept Elect Elect & Informat Engn Guglielmo Marcon Cesena Campus Cesena Italy Concordia Univ Dept Comp Sci & Software Engn Montreal PQ Canada Mila Quebec AI Inst Montreal PQ Canada
neural decoding widely exploits machine learning for classifying electroencephalographic (EEG) signals for brain-computer interface applications. Recent advancements in neural decoding regards the use of brain functio... 详细信息
来源: 评论
Assessment of Pharmaceutical Patent Novelty with Siamese neural networks  10th
Assessment of Pharmaceutical Patent Novelty with Siamese Neu...
收藏 引用
10th iapr TC3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: El-Shimy, Heba Zantout, Hind Hassen, Hani Ragab Heriot Watt Univ Dubai U Arab Emirates
Patents in the pharmaceutical field fulfil an important role as they contain details of the final product that is the culmination of years of research and possibly millions of dollars of investment. It is crucial that... 详细信息
来源: 评论
Leveraging LSTM Embeddings for River Water Temperature Modeling  11th
Leveraging LSTM Embeddings for River Water Temperature Model...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Fankhauser, Benjamin Bigler, Vidushi Riesen, Kaspar Univ Bern Inst Comp Sci Bern Switzerland Bern Univ Appl Sci Inst Optimisat & Data Anal Biel Switzerland
River water temperature modeling is a major task in climate research. State-of-the-art methods for water temperature modeling deploy a transductive design, which makes it difficult to generalize to unseen water statio... 详细信息
来源: 评论
Machine Learning for Clinical Score Prediction from Longitudinal Dataset: A Case Study on Parkinson's Disease  11th
Machine Learning for Clinical Score Prediction from Longitud...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Ahmed, Nourin Kobti, Ziad Univ Windsor Sch Comp Sci Windsor ON N9B 3P4 Canada
Accurate prediction of Parkinson's disease (PD) progression is vital for personalized treatment and effective clinical trials. This study presents a machine learning approach to predict the Movement Disorder Socie... 详细信息
来源: 评论
Vision Transformer Features-Based Leukemia Classification  11th
Vision Transformer Features-Based Leukemia Classification
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Ben-Suliman, Karima Krzyzak, Adam Concordia Univ Dept Comp Sci & Software Engn Montreal PQ H3G 1M8 Canada
Acute Lymphoblastic Leukemia (ALL) is a disease that is caused by the uncontrollable growth of immature and malignant White Blood Cells (WBCs) which are called lymphoblasts. It occurs when the bone marrow contains 20%... 详细信息
来源: 评论
Multi-modal Decoding of Reach-to-Grasping from EEG and EMG via neural networks  11th
Multi-modal Decoding of Reach-to-Grasping from EEG and EMG v...
收藏 引用
11th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Borra, Davide Fraternali, Matteo Ravanelli, Mirco Magosso, Elisa Univ Bologna Dept Elect Elect & Informat Engn Guglielmo Marcon Cesena Campus Cesena Italy Concordia Univ Dept Comp Sci & Software Engn Montreal PQ Canada Mila Quebec AI Inst Montreal PQ Canada
Convolutional neural networks (CNNs) have revolutionized motor decoding from electroencephalographic (EEG) signals, showcasing their ability to outperform traditional machine learning, especially for Brain-Computer In... 详细信息
来源: 评论