咨询与建议

限定检索结果

文献类型

  • 248 篇 会议
  • 18 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 269 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 工学
    • 217 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 32 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 63 篇 理学
    • 37 篇 数学
    • 21 篇 生物学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 24 篇 管理学
    • 20 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 22 篇 neural networks
  • 15 篇 pattern recognit...
  • 14 篇 deep learning
  • 11 篇 convolutional ne...
  • 7 篇 face recognition
  • 7 篇 feature extracti...
  • 7 篇 supervised learn...
  • 7 篇 recurrent neural...
  • 5 篇 deep neural netw...
  • 5 篇 recurrent neural...
  • 5 篇 emotion recognit...
  • 5 篇 artificial intel...
  • 4 篇 neurons
  • 4 篇 support vector m...
  • 4 篇 human computer i...
  • 4 篇 image segmentati...
  • 4 篇 graph neural net...
  • 4 篇 density estimati...
  • 4 篇 recursive neural...
  • 4 篇 character recogn...

机构

  • 11 篇 univ ulm inst ne...
  • 5 篇 concordia univ d...
  • 5 篇 univ ulm dept ne...
  • 4 篇 institute of neu...
  • 4 篇 ulm univ inst ne...
  • 4 篇 univ siena dipar...
  • 3 篇 concordia univ d...
  • 3 篇 univ siena dipar...
  • 2 篇 univ london birk...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ siena siena
  • 2 篇 institute of neu...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 univ paris 06 la...
  • 2 篇 ulm university i...
  • 2 篇 heriot watt univ...
  • 2 篇 univ ulm inst ne...
  • 2 篇 univ hosp ulm de...

作者

  • 41 篇 schwenker friedh...
  • 12 篇 trentin edmondo
  • 10 篇 palm guenther
  • 8 篇 kestler hans a.
  • 8 篇 meudt sascha
  • 6 篇 el gayar neamat
  • 6 篇 riesen kaspar
  • 6 篇 thiam patrick
  • 5 篇 stadelmann thilo
  • 5 篇 kaechele markus
  • 5 篇 amirian mohammad...
  • 4 篇 burnaev evgeny
  • 4 篇 hernandez-espino...
  • 4 篇 hammer barbara
  • 4 篇 lausser ludwig
  • 4 篇 bianchini monica
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 4 篇 fischer andreas
  • 4 篇 palm günther

语言

  • 268 篇 英文
  • 1 篇 中文
检索条件"任意字段=3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
269 条 记 录,以下是221-230 订阅
排序:
Sign-based learning schemes for pattern classification
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1926-1936页
作者: Anastasiadis, AD Magoulas, GD Vrahatis, MN Univ London Birkbeck Coll Sch Comp Sci & Informat Syst Knowledge Lab London WC1N 3QS England Univ London Birkbeck Coll Sch Comp Sci & Informat Syst London WC1E 7HX England Univ Patras UPAIRC Dept Math GR-26110 Patras Greece
This paper introduces a new class of sign-based training algorithms for neural networks that combine the sign-based updates of the Rprop algorithm with the composite nonlinear Jacobi method. The theoretical foundation... 详细信息
来源: 评论
Polyphonic monotimbral music transcription using dynamic networks
Polyphonic monotimbral music transcription using dynamic net...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Pertusa, A Inesta, JM Univ Alicante Dept Lenguajes & Sistemas Informat E-03080 Alicante Spain
The automatic extraction of the notes that were played in a digital musical signal (automatic music transcription) is an open problem. A number of techniques have been applied to solve it without concluding results. T... 详细信息
来源: 评论
Hybrid generative/discriminative classifier for unconstrained character recognition
Hybrid generative/discriminative classifier for unconstraine...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Prevost, L Oudot, L Moises, A Michel-Sendis, C Milgram, M Univ Paris 06 Lab Instruments & Syst Ile France Grp PARC F-75252 Paris France
Handwriting recognition for hand-held devices like PDAs requires very accurate and adaptive classifiers. It is such a complex classification problem that it is quite usual now to make co-operate several classification... 详细信息
来源: 评论
Time series forecasting: Obtaining long term trends with self-organizing maps
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1795-1808页
作者: Simon, G Lendasse, A Cottrell, M Fort, JC Verleysen, M Univ Catholique Louvain DICE Machine Learning grp B-1348 Louvain Belgium Helsinki Univ Technol Lab Comp & Informat Sci Neural Networks Res Ctr FIN-02015 Espoo Finland Univ Paris 01 CNRS UMR 8595 Samos Matisse F-75634 Paris France Univ Toulouse 3 CNRS C55830 Lab Stat & Probabil F-31062 Toulouse France
Kohonen self-organisation maps are a well know classification tool, commonly used in a wide variety of problems, but with limited applications in time series forecasting context. In this paper, we propose a forecastin... 详细信息
来源: 评论
Time series forecasting: Obtaining long term trends with self-organizing maps
Time series forecasting: Obtaining long term trends with sel...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Simon, G Lendasse, A Cottrell, M Fort, JC Verleysen, M Univ Catholique Louvain DICE Machine Learning grp B-1348 Louvain Belgium Helsinki Univ Technol Lab Comp & Informat Sci Neural Networks Res Ctr FIN-02015 Espoo Finland Univ Paris 01 CNRS UMR 8595 Samos Matisse F-75634 Paris France Univ Toulouse 3 CNRS C55830 Lab Stat & Probabil F-31062 Toulouse France
Kohonen self-organisation maps are a well know classification tool, commonly used in a wide variety of problems, but with limited applications in time series forecasting context. In this paper, we propose a forecastin... 详细信息
来源: 评论
Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications
Using unsupervised learning of a finite Dirichlet mixture mo...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Bouguila, N Ziou, D Univ Sherbrooke Fac Sci Dept Informat Sherbrooke PQ J1K 2R1 Canada
Mixture modeling is the problem of identifying and modeling components in a given set of data. Gaussians are widely used in mixture modeling. At the same time, other models such as Dirichlet distributions have not rec... 详细信息
来源: 评论
Hybrid generative/discriminative classifier for unconstrained character recognition
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1840-1848页
作者: Prevost, L Oudot, L Moises, A Michel-Sendis, C Milgram, M Univ Paris 06 Lab Instruments & Syst Ile France Grp PARC F-75252 Paris France
Handwriting recognition for hand-held devices like PDAs requires very accurate and adaptive classifiers. It is such a complex classification problem that it is quite usual now to make co-operate several classification... 详细信息
来源: 评论
An improved handwritten Chinese character recognition system using support vector machine
An improved handwritten Chinese character recognition system...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Dong, JX Krzyzak, A Suen, CY Ctr Pattern Regcognit & Machine Intelligence Montreal PQ H3G 1M8 Canada Concordia Univ Dept Comp Sci & Software Engn Montreal PQ H3G 1M8 Canada
This paper describes several techniques improving a Chinese character recognition system. Enhanced nonlinear normalization, feature extraction and tuning kernel parameters of support vector machine on a large data set... 详细信息
来源: 评论
Using unsupervised learning of a finite Dirichlet mixture model to improve pattern recognition applications
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1916-1925页
作者: Bouguila, N Ziou, D Univ Sherbrooke Fac Sci Dept Informat Sherbrooke PQ J1K 2R1 Canada
Mixture modeling is the problem of identifying and modeling components in a given set of data. Gaussians are widely used in mixture modeling. At the same time, other models such as Dirichlet distributions have not rec... 详细信息
来源: 评论
Unsupervised spatial pattern classification of electrical-wafer-sorting maps in semiconductor manufacturing
Unsupervised spatial pattern classification of electrical-wa...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Di Palma, F De Nicolao, G Miraglia, G Pasquinetti, E Piccinini, F Univ Pavia Dipartimento Informat & Sistemist I-27100 Pavia Italy STMicroelect I-20041 Agrate Brianza Italy
in semiconductor manufacturing, the spatial pattern of failed devices in a wafer can give precious hints on which step of the process is responsible for the failures. In the literature, Kohonen's Self Organizing F... 详细信息
来源: 评论