咨询与建议

限定检索结果

文献类型

  • 248 篇 会议
  • 18 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 274 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 工学
    • 217 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 32 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 63 篇 理学
    • 37 篇 数学
    • 21 篇 生物学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 24 篇 管理学
    • 20 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 22 篇 neural networks
  • 19 篇 pattern recognit...
  • 14 篇 deep learning
  • 11 篇 convolutional ne...
  • 10 篇 artificial intel...
  • 7 篇 face recognition
  • 7 篇 feature extracti...
  • 7 篇 supervised learn...
  • 7 篇 recurrent neural...
  • 5 篇 deep neural netw...
  • 5 篇 recurrent neural...
  • 5 篇 emotion recognit...
  • 4 篇 neurons
  • 4 篇 support vector m...
  • 4 篇 human computer i...
  • 4 篇 image segmentati...
  • 4 篇 data mining and ...
  • 4 篇 graph neural net...
  • 4 篇 density estimati...
  • 4 篇 recursive neural...

机构

  • 11 篇 univ ulm inst ne...
  • 5 篇 concordia univ d...
  • 5 篇 univ ulm dept ne...
  • 4 篇 institute of neu...
  • 4 篇 ulm univ inst ne...
  • 4 篇 univ siena dipar...
  • 3 篇 concordia univ d...
  • 3 篇 univ siena dipar...
  • 2 篇 univ london birk...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ siena siena
  • 2 篇 institute of neu...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 univ paris 06 la...
  • 2 篇 ulm university i...
  • 2 篇 heriot watt univ...
  • 2 篇 univ ulm inst ne...
  • 2 篇 univ hosp ulm de...

作者

  • 41 篇 schwenker friedh...
  • 12 篇 trentin edmondo
  • 10 篇 palm guenther
  • 8 篇 kestler hans a.
  • 8 篇 meudt sascha
  • 6 篇 el gayar neamat
  • 6 篇 riesen kaspar
  • 6 篇 thiam patrick
  • 5 篇 stadelmann thilo
  • 5 篇 kaechele markus
  • 5 篇 amirian mohammad...
  • 4 篇 burnaev evgeny
  • 4 篇 hernandez-espino...
  • 4 篇 hammer barbara
  • 4 篇 lausser ludwig
  • 4 篇 bianchini monica
  • 4 篇 friedhelm schwen...
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 4 篇 fischer andreas

语言

  • 273 篇 英文
  • 1 篇 中文
检索条件"任意字段=3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
274 条 记 录,以下是61-70 订阅
排序:
Probabilistic neural network playing and learning Tic-Tac-Toe
Probabilistic neural network playing and learning Tic-Tac-To...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Grim, J Somol, P Pudil, P Acad Sci Czech Republic Inst Informat Theory & Automat CZ-18208 Prague Czech Republic
A probabilistic neural network is applied as a tool to approximate the statistical evaluation function for a simple version of the game Tic-Tac-Toe. We solve the problem by a sequential estimation of the underlying di... 详细信息
来源: 评论
Audio-Visual User Identification in HCI Scenarios  3
收藏 引用
3rd iapr TC3 workshop on pattern recognition of Social Signals in Human-Computer-Interaction (MPRSS)
作者: Kaechele, Markus Meudt, Sascha Schwarz, Andrej Schwenker, Friedhelm Univ Ulm Inst Neural Informat Proc D-89069 Ulm Germany
Modern computing systems are usually equipped with various input devices such as microphones or cameras, and hence the user of such a system can easily be identified. User identification is important in many human com... 详细信息
来源: 评论
Soft-Constrained Nonparametric Density Estimation with artificial neural networks  7th
Soft-Constrained Nonparametric Density Estimation with Artif...
收藏 引用
7th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Trentin, Edmondo Univ Siena Dipartimento Ingn Informaz & Sci Matemat Siena Italy
The estimation of probability density functions (pdf) from unlabeled data samples is a relevant (and, still open) issue in pattern recognition and machine learning. Statistical parametric and nonparametric approaches ... 详细信息
来源: 评论
Wide coverage natural language processing using kernel methods and neural networks for structured data
Wide coverage natural language processing using kernel metho...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Menchetti, S Costa, F Frasconi, P Pontil, M Univ Florence Dept Comp Sci & Syst I-50139 Florence Italy UCL Dept Comp Sci London WC1E 6BT England
Convolution kernels and recursive neural networks are both suitable approaches for supervised learning when the input is a discrete structure like a labeled tree or graph. We compare these techniques in two natural la... 详细信息
来源: 评论
Teeth/palate and interdental segmentation using artificial neural networks
Teeth/palate and interdental segmentation using artificial n...
收藏 引用
5th INNS iapr TC 3 GIRPR workshop on artificial neural networks for pattern recognition, ANNPR 2012
作者: Fernandez, Kelwin Chang, Carolina Grupo de Inteligencia Artificial Universidad Simón Bolívar Caracas Venezuela
We present a computational system that combines artificial neural networks and other image processing techniques to achieve teeth/palate segmentation and interdental segmentation in palatal view photographs of the upp... 详细信息
来源: 评论
Recursive neural networks learn to localize faces
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1885-1895页
作者: Bianchini, M Maggini, M Sarti, L Scarselli, F Univ Siena Dipartimento Ingn Informaz I-53100 Siena Italy
Localizing faces in images is a difficult task, and represents the first step towards the solution of the face recognition problem. Moreover, devising an effective face detection method can provide some suggestions to... 详细信息
来源: 评论
SeNA-CNN: Overcoming Catastrophic Forgetting in Convolutional neural networks by Selective Network Augmentation  8th
SeNA-CNN: Overcoming Catastrophic Forgetting in Convolutiona...
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Zacarias, Abel Alexandre, Luis A. Univ Beira Interior Inst Telecomunicacoes Rua Marques dAvila & Bolama P-6201001 Covilha Portugal
Lifelong learning aims to develop machine learning systems that can learn new tasks while preserving the performance on previous learned tasks. In this paper we present a method to overcome catastrophic forgetting on ... 详细信息
来源: 评论
Historical Handwritten Document Segmentation by Using a Weighted Loss  8th
Historical Handwritten Document Segmentation by Using a Weig...
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Capobianco, Samuele Scommegna, Leonardo Marinai, Simone Univ Florence Via Santa Marta 3 Florence Italy
In this work we propose one deep architecture to identify text and not-text regions in historical handwritten documents. In particular we adopt the U-net architecture in combination with a suitable weighted loss funct... 详细信息
来源: 评论
Recursive neural networks learn to localize faces
Recursive neural networks learn to localize faces
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Bianchini, M Maggini, M Sarti, L Scarselli, F Univ Siena Dipartimento Ingn Informaz I-53100 Siena Italy
Localizing faces in images is a difficult task, and represents the first step towards the solution of the face recognition problem. Moreover, devising an effective face detection method can provide some suggestions to... 详细信息
来源: 评论
A Spiking neural Network for Personalised Modelling of Electrogastrography (EGG)  7th
A Spiking Neural Network for Personalised Modelling of Elect...
收藏 引用
7th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Breen, Vivienne Kasabov, Nikola Du, Peng Calder, Stefan Auckland Univ Technol Knowledge Engn & Discovery Res Inst Auckland New Zealand Univ Auckland Auckland Bioengn Inst Auckland New Zealand
EGG records the resultant body surface potential of gastric slow waves (electrical activity);while slow waves regulate contractions of gastric muscles, it is the electrical activity we are recording, not movement (lik... 详细信息
来源: 评论