咨询与建议

限定检索结果

文献类型

  • 248 篇 会议
  • 18 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 274 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 工学
    • 217 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 32 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 63 篇 理学
    • 37 篇 数学
    • 21 篇 生物学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 24 篇 管理学
    • 20 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 22 篇 neural networks
  • 19 篇 pattern recognit...
  • 14 篇 deep learning
  • 11 篇 convolutional ne...
  • 10 篇 artificial intel...
  • 7 篇 face recognition
  • 7 篇 feature extracti...
  • 7 篇 supervised learn...
  • 7 篇 recurrent neural...
  • 5 篇 deep neural netw...
  • 5 篇 recurrent neural...
  • 5 篇 emotion recognit...
  • 4 篇 neurons
  • 4 篇 support vector m...
  • 4 篇 human computer i...
  • 4 篇 image segmentati...
  • 4 篇 data mining and ...
  • 4 篇 graph neural net...
  • 4 篇 density estimati...
  • 4 篇 recursive neural...

机构

  • 11 篇 univ ulm inst ne...
  • 5 篇 concordia univ d...
  • 5 篇 univ ulm dept ne...
  • 4 篇 institute of neu...
  • 4 篇 ulm univ inst ne...
  • 4 篇 univ siena dipar...
  • 3 篇 concordia univ d...
  • 3 篇 univ siena dipar...
  • 2 篇 univ london birk...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ siena siena
  • 2 篇 institute of neu...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 univ paris 06 la...
  • 2 篇 ulm university i...
  • 2 篇 heriot watt univ...
  • 2 篇 univ ulm inst ne...
  • 2 篇 univ hosp ulm de...

作者

  • 41 篇 schwenker friedh...
  • 12 篇 trentin edmondo
  • 10 篇 palm guenther
  • 8 篇 kestler hans a.
  • 8 篇 meudt sascha
  • 6 篇 el gayar neamat
  • 6 篇 riesen kaspar
  • 6 篇 thiam patrick
  • 5 篇 stadelmann thilo
  • 5 篇 kaechele markus
  • 5 篇 amirian mohammad...
  • 4 篇 burnaev evgeny
  • 4 篇 hernandez-espino...
  • 4 篇 hammer barbara
  • 4 篇 lausser ludwig
  • 4 篇 bianchini monica
  • 4 篇 friedhelm schwen...
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 4 篇 fischer andreas

语言

  • 273 篇 英文
  • 1 篇 中文
检索条件"任意字段=3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
274 条 记 录,以下是71-80 订阅
排序:
Statistical recognition of a set of patterns using novel probability neural network
Statistical recognition of a set of patterns using novel pro...
收藏 引用
5th INNS iapr TC 3 GIRPR workshop on artificial neural networks for pattern recognition, ANNPR 2012
作者: Savchenko, Andrey V. National Research University Higher School of Economics Nizhniy Novgorod Russia
Since the works by Specht, the probabilistic neural networks (PNNs) have attracted researchers due to their ability to increase training speed and their equivalence to the optimal Bayesian decision of classification t... 详细信息
来源: 评论
Capturing Suprasegmental Features of a Voice with RNNs for Improved Speaker Clustering  8th
Capturing Suprasegmental Features of a Voice with RNNs for I...
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Stadelmann, Thilo Glinski-Haefeli, Sebastian Gerber, Patrick Duerr, Oliver Zurich Univ Appl Sci ZHAW Datalab Winterthur Switzerland Konstanz Univ Appl Sci Inst Opt Syst Constance Germany
Deep neural networks have become a veritable alternative to classic speaker recognition and clustering methods in recent years. However, while the speech signal clearly is a time series, and despite the body of litera... 详细信息
来源: 评论
Biologically inspired architecture of feedforward networks for signal classification
Biologically inspired architecture of feedforward networks f...
收藏 引用
International Association of pattern recognition, iapr 2000 held jointly with 8th International workshop on Structural and Syntactic pattern recognition, SSPR 2000 and 3rd International workshop on Statistical Techniques in pattern recognition, SPR 2000
作者: Raudys, Šarūnas Tamošiūnaitė, Minija Institute of Mathematics and Informatics Vytautas Magnus University Vileikos 8 KaunasLT-3035 Lithuania
The hypothesis is that in the lowest hidden layers of biological systems "local subnetworks" are smoothing an input signal. The smoothing accuracy may serve as a feature to feed the subsequent layers of the ... 详细信息
来源: 评论
Object Detection in Floor Plan Images  8th
Object Detection in Floor Plan Images
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Ziran, Zahra Marinai, Simone Univ Firenze Dipartimento Ingn Informaz DINFO Florence Italy
In this work we investigate the use of deep neural networks for object detection in floor plan images. Object detection is important for understanding floor plans and is a preliminary step for their conversion into ot... 详细信息
来源: 评论
Image pattern recognition in natural environment using morphological feature extraction
Image pattern recognition in natural environment using morph...
收藏 引用
International Association of pattern recognition, iapr 2000 held jointly with 8th International workshop on Structural and Syntactic pattern recognition, SSPR 2000 and 3rd International workshop on Statistical Techniques in pattern recognition, SPR 2000
作者: Won, Yonggwan Nam, Jiseung Lee, Bae-Ho Department of Computer Engineering Chonnam National University 300 Yongbong-Dong Puk-Gu Kwangju Korea Republic of
The gray-scale morphological Hit-or-Miss transform is theoretically invariant to vertical translation of the input function, which is analogous to gray-value shift of the input images. Designing optimal structuring el... 详细信息
来源: 评论
Emotion recognition in Speech with Deep Learning Architectures  7th
Emotion Recognition in Speech with Deep Learning Architectur...
收藏 引用
7th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Erdal, Mehmet Kaechele, Markus Schwenker, Friedhelm Univ Ulm Inst Neural Informat Proc D-89081 Ulm Germany
Deep neural networks (DNNs) became very popular for learning abstract high-level representations from raw data. This lead to improvements in several classification tasks including emotion recognition in speech. Beside... 详细信息
来源: 评论
Sign-based learning schemes for pattern classification
收藏 引用
pattern recognition LETTERS 2005年 第12期26卷 1926-1936页
作者: Anastasiadis, AD Magoulas, GD Vrahatis, MN Univ London Birkbeck Coll Sch Comp Sci & Informat Syst Knowledge Lab London WC1N 3QS England Univ London Birkbeck Coll Sch Comp Sci & Informat Syst London WC1E 7HX England Univ Patras UPAIRC Dept Math GR-26110 Patras Greece
This paper introduces a new class of sign-based training algorithms for neural networks that combine the sign-based updates of the Rprop algorithm with the composite nonlinear Jacobi method. The theoretical foundation... 详细信息
来源: 评论
Improving iris recognition through new target vectors in MLP artificial neural networks
Improving iris recognition through new target vectors in MLP...
收藏 引用
5th INNS iapr TC 3 GIRPR workshop on artificial neural networks for pattern recognition, ANNPR 2012
作者: Manzan, José Ricardo Gonçalves Nomura, Shigueo Yamanaka, Keiji Bueno Pereira Carneiro, Milena Veiga, Antônio C. Paschoarelli Faculty of Electrical Engineering Federal University of Uberlândia Campus Santa Mônica Av. João Naves de Ávila 2160 Bloco 3N CEP: 38400-902 - Uberlândia - MG Brazil
This paper compares the performance of multilayer perceptron (MLP) networks trained with conventional bipolar target vectors (CBVs) and orthogonal bipolar new target vectors (OBVs) for biometric pattern recognition. T... 详细信息
来源: 评论
A Novel Representation of Graphical patterns for Graph Convolution networks  10th
A Novel Representation of Graphical Patterns for Graph Convo...
收藏 引用
10th iapr TC3 workshop on artificial neural networks for pattern recognition (ANNPR)
作者: Benini, Marco Bongini, Pietro Trentin, Edmondo Univ Siena DIISM Siena Italy
In the context of machine learning on graph data, graph deep learning has captured the attention of many researcher. Due to the promising results of deep learning models in the most diverse fields of application, grea... 详细信息
来源: 评论
Parallelized Kernel Patch Clustering
Parallelized Kernel Patch Clustering
收藏 引用
4th workshop on artificial neural networks in pattern recognition
作者: Fausser, Stefan Schwenker, Friedhelm Univ Ulm Inst Neural Informat Proc D-89069 Ulm Germany
Kernel based clustering methods allow to unsupervised partition samples in feature space but have a. quadratic computation time O(n(2)) where n are the number of samples. Therefore these methods are generally ineligib... 详细信息
来源: 评论