咨询与建议

限定检索结果

文献类型

  • 248 篇 会议
  • 18 篇 期刊文献
  • 8 册 图书

馆藏范围

  • 274 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 231 篇 工学
    • 217 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 32 篇 信息与通信工程
    • 15 篇 生物工程
    • 13 篇 电气工程
    • 10 篇 生物医学工程(可授...
    • 6 篇 光学工程
    • 4 篇 控制科学与工程
    • 4 篇 化学工程与技术
    • 3 篇 机械工程
    • 3 篇 材料科学与工程(可...
    • 3 篇 建筑学
    • 2 篇 土木工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
  • 63 篇 理学
    • 37 篇 数学
    • 21 篇 生物学
    • 15 篇 物理学
    • 8 篇 统计学(可授理学、...
    • 3 篇 化学
    • 2 篇 系统科学
  • 24 篇 管理学
    • 20 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 11 篇 医学
    • 10 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 3 篇 药学(可授医学、理...
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学

主题

  • 22 篇 neural networks
  • 19 篇 pattern recognit...
  • 14 篇 deep learning
  • 11 篇 convolutional ne...
  • 10 篇 artificial intel...
  • 7 篇 face recognition
  • 7 篇 feature extracti...
  • 7 篇 supervised learn...
  • 7 篇 recurrent neural...
  • 5 篇 deep neural netw...
  • 5 篇 recurrent neural...
  • 5 篇 emotion recognit...
  • 4 篇 neurons
  • 4 篇 support vector m...
  • 4 篇 human computer i...
  • 4 篇 image segmentati...
  • 4 篇 data mining and ...
  • 4 篇 graph neural net...
  • 4 篇 density estimati...
  • 4 篇 recursive neural...

机构

  • 11 篇 univ ulm inst ne...
  • 5 篇 concordia univ d...
  • 5 篇 univ ulm dept ne...
  • 4 篇 institute of neu...
  • 4 篇 ulm univ inst ne...
  • 4 篇 univ siena dipar...
  • 3 篇 concordia univ d...
  • 3 篇 univ siena dipar...
  • 2 篇 univ london birk...
  • 2 篇 tech univ claust...
  • 2 篇 univ jaume 1 dep...
  • 2 篇 univ siena siena
  • 2 篇 institute of neu...
  • 2 篇 institute for in...
  • 2 篇 helsinki univ te...
  • 2 篇 univ paris 06 la...
  • 2 篇 ulm university i...
  • 2 篇 heriot watt univ...
  • 2 篇 univ ulm inst ne...
  • 2 篇 univ hosp ulm de...

作者

  • 41 篇 schwenker friedh...
  • 12 篇 trentin edmondo
  • 10 篇 palm guenther
  • 8 篇 kestler hans a.
  • 8 篇 meudt sascha
  • 6 篇 el gayar neamat
  • 6 篇 riesen kaspar
  • 6 篇 thiam patrick
  • 5 篇 stadelmann thilo
  • 5 篇 kaechele markus
  • 5 篇 amirian mohammad...
  • 4 篇 burnaev evgeny
  • 4 篇 hernandez-espino...
  • 4 篇 hammer barbara
  • 4 篇 lausser ludwig
  • 4 篇 bianchini monica
  • 4 篇 friedhelm schwen...
  • 4 篇 fernandez-redond...
  • 4 篇 torres-sospedra ...
  • 4 篇 fischer andreas

语言

  • 273 篇 英文
  • 1 篇 中文
检索条件"任意字段=3rd IAPR Workshop on Artificial Neural Networks in Pattern Recognition"
274 条 记 录,以下是81-90 订阅
排序:
A Refinement Algorithm for Deep Learning via Error-Driven Propagation of Target Outputs  8th
A Refinement Algorithm for Deep Learning via Error-Driven Pr...
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Laveglia, Vincenzo Trentin, Edmondo Univ Firenze DINFO Via S Marta 3 I-50139 Florence Italy Univ Siena DIISM Via Roma 56 I-53100 Siena Italy
Target propagation in deep neural networks aims at improving the learning process by determining target outputs for the hidden layers of the network. To date, this has been accomplished via gradient-descent or relying... 详细信息
来源: 评论
Global Coordination Based on Matrix neural Gas for Dynamic Texture Synthesis
Global Coordination Based on Matrix Neural Gas for Dynamic T...
收藏 引用
4th workshop on artificial neural networks in pattern recognition
作者: Arnonkijpanich, Banchar Hammer, Barbara Khon Kaen Univ Fac Sci Dept Math Khon Kaen 40002 Thailand Univ Bielefeld CITEC D-33615 Bielefeld Germany Commiss Higher Educ Ctr Excellence Math Bangkok 10400 Thailand
Matrix neural gas has been proposed as a mathematically well-founded extension of neural gas networks to represent data in terms of prototypes and local principal components in a smooth way. The additional information... 详细信息
来源: 评论
ATM Protection Using Embedded Deep Learning Solutions  8th
ATM Protection Using Embedded Deep Learning Solutions
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Rossi, Alessandro Rizzo, Antonio Montefoschi, Francesco Univ Siena Siena Italy
Last decade advances in Deep Learning methods lead to sensible improvements in state of the art results in many real world applications, thanks to the exploitation of particular artificial neural networks architecture... 详细信息
来源: 评论
A study of the robustness of KNN classifiers trained using soft labels
收藏 引用
2nd iapr workshop on artificial neural networks in pattern recognition
作者: El Gayar, Neamat Schwenker, Friedhelm Palm, Guenther Cairo Univ Fac Comp & Informat Giza 12613 Egypt Univ Ulm Dept Neural Informat Proc D-89069 Ulm Germany
Supervised learning models most commonly use crisp labels for classifier training. Crisp labels fail to capture the data characteristics when overlapping classes exist. In this work we attempt to compare between learn... 详细信息
来源: 评论
Sign-based learning schemes for pattern classification
Sign-based learning schemes for pattern classification
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Anastasiadis, AD Magoulas, GD Vrahatis, MN Univ London Birkbeck Coll Sch Comp Sci & Informat Syst Knowledge Lab London WC1N 3QS England Univ London Birkbeck Coll Sch Comp Sci & Informat Syst London WC1E 7HX England Univ Patras UPAIRC Dept Math GR-26110 Patras Greece
This paper introduces a new class of sign-based training algorithms for neural networks that combine the sign-based updates of the Rprop algorithm with the composite nonlinear Jacobi method. The theoretical foundation... 详细信息
来源: 评论
Maximum-Likelihood Estimation of neural Mixture Densities: Model, Algorithm, and Preliminary Experimental Evaluation  8th
Maximum-Likelihood Estimation of Neural Mixture Densities: M...
收藏 引用
8th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Trentin, Edmondo Univ Siena Dipartimento Ingn Informaz & Sci Matemat Siena Italy
Unsupervised estimation of probability density functions by means of parametric mixture densities (e.g., Gaussian mixture models) may improve significantly over plain, single-density estimators in terms of modeling ca... 详细信息
来源: 评论
Unsupervised feature selection for biomarker identification in chromatography and gene expression data
收藏 引用
2nd iapr workshop on artificial neural networks in pattern recognition
作者: Strickert, Marc Sreenivasulu, Nese Peterek, Silke Weschke, Winfriede Mock, Hans-Peter Seiffert, Udo Pattern Recognition Group Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany Gene Expression Group Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany Applied Biochemistry Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Germany
A novel approach to feature selection from unlabeled vector data is presented. It is based on the reconstruction of original data relationships in an auxiliary space with either weighted or omitted features. Feature w... 详细信息
来源: 评论
Towards Effective Classification of Imbalanced Data with Convolutional neural networks  7th
Towards Effective Classification of Imbalanced Data with Con...
收藏 引用
7th iapr TC3 workshop on artificial neural networks in pattern recognition (ANNPR)
作者: Raj, Vidwath Magg, Sven Wermter, Stefan Univ Hamburg Dept Informat Knowledge Technol Hamburg Germany
Class imbalance in machine learning is a problem often found with real-world data, where data from one class clearly dominates the dataset. Most neural network classifiers fail to learn to classify such datasets corre... 详细信息
来源: 评论
Fusers Based on Classifier Response and Discriminant Function - Comparative Study
Fusers Based on Classifier Response and Discriminant Functio...
收藏 引用
3rd International workshop on Hybrid artificial Intelligence Systems
作者: Wozniak, Michal Jackowski, Konrad Wroclaw Univ Technol Chair Syst & Comp Networks PL-50370 Wroclaw Poland
The Multiple Classifier Systems are nowadays one of the most promising directions in pattern recognition. There are many methods of decision making by the ensemble of classifiers. The most popular are methods that hav... 详细信息
来源: 评论
Polyphonic monotimbral music transcription using dynamic networks
Polyphonic monotimbral music transcription using dynamic net...
收藏 引用
1st iapr TC3 workshop on artificial neural networks in pattern recognition
作者: Pertusa, A Inesta, JM Univ Alicante Dept Lenguajes & Sistemas Informat E-03080 Alicante Spain
The automatic extraction of the notes that were played in a digital musical signal (automatic music transcription) is an open problem. A number of techniques have been applied to solve it without concluding results. T... 详细信息
来源: 评论